Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
reerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrzoomffffffff222222222222222222222222222222222222222222222222222222222222222222222222345678888uuu
a) \(\frac{1}{12}+\frac{3}{15}+\frac{11}{12}+\frac{1}{71}-\frac{12}{10}=\left(\frac{1}{12}+\frac{11}{12}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\frac{1}{71}\)
\(=\frac{12}{12}+0+\frac{1}{71}=1+\frac{1}{71}=1\frac{1}{71}=\frac{72}{71}\)
b) \(\frac{2}{3}-4\left(\frac{1}{2}+\frac{3}{4}\right)=\frac{2}{3}-4.\frac{5}{4}=\frac{2}{3}-5=\frac{2}{3}-\frac{15}{3}=-\frac{13}{3}\)
c) \(\frac{-4}{13}.\frac{3}{17}+\frac{-12}{13}.\frac{4}{7}+\frac{4}{13}=\frac{4}{13}.\frac{-3}{17}+\frac{4}{13}.\frac{-12}{17}+\frac{4}{13}.1\)
\(=\frac{4}{13}\left(\frac{-3}{17}+\frac{-12}{17}+1\right)=\frac{4}{13}\left(\frac{-15}{17}+\frac{17}{17}\right)=\frac{4}{13}.\frac{2}{17}=\frac{8}{221}\)
d) \(\frac{10^3+2.5+5^3}{55}=\frac{1000+10+125}{55}=\frac{1135}{55}=\frac{227}{11}\)
\(\frac{10\frac{1}{3}\left(26\frac{1}{3}-\frac{176}{7}\right)-\frac{12}{11}\left(\frac{10}{3}-1,75\right)}{\frac{5}{\left(91-0,25\right).\frac{60}{11}-1}}\)
\(\Leftrightarrow\left(\frac{31}{3}.\frac{25}{21}-\frac{12}{11}.\frac{19}{12}\right):\left(5:495-1\right)\)
\(\Leftrightarrow\left(\frac{775}{63}-\frac{19}{11}\right):\left(-\frac{98}{99}\right)\)
\(\Leftrightarrow x=-\frac{3664}{343}\)
mk ko viết lại đề đâu
A=\(\frac{\frac{31}{3}.\frac{25}{21}-\frac{12}{11}.\frac{19}{12}}{\frac{5}{90,75.\frac{60}{11}-1}}=\frac{\frac{775}{63}-\frac{19}{11}}{\frac{5}{495-1}}=\frac{7328}{693}:\frac{5}{494}=\frac{7328}{693}.\frac{494}{5}=\)
có máy tính thì tính được hết
thế này à:
\(\frac{91-\frac{1}{11}-\frac{2}{12}-\frac{3}{13}-...-\frac{91}{101}}{\frac{1}{55}+\frac{1}{60}+....+\frac{1}{505}}\)
\(\frac{91-\frac{1}{11}-\frac{2}{12}-\frac{3}{13}-...-\frac{91}{101}}{\frac{1}{55}+\frac{1}{60}+\frac{1}{65}+...+\frac{1}{505}}\)
Xét tử:
\(91-\frac{1}{11}-\frac{2}{12}-\frac{3}{13}-...-\frac{91}{101}\)
= \(\left(1+1+1+...+1\right)-\left(\frac{1}{11}+\frac{2}{12}+\frac{3}{13}+...+\frac{91}{101}\right)\)
= \(\left(1-\frac{1}{11}\right)+\left(1-\frac{2}{12}\right)+....+\left(1-\frac{91}{101}\right)\)
= \(\frac{10}{11}+\frac{10}{12}+...+\frac{10}{101}\)
= \(10.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{101}\right)\)
= \(10.5.\left(\frac{1}{55}+\frac{1}{60}+...+\frac{1}{505}\right)\)
= \(50.\left(\frac{1}{55}+\frac{1}{60}+...+\frac{1}{505}\right)\)
Thay vào ta được phân số:
\(\frac{50.\left(\frac{1}{55}+\frac{1}{60}+...+\frac{1}{505}\right)}{\frac{1}{55}+\frac{1}{60}+...+\frac{1}{505}}\)
= 50