Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại số nguyên n thoả mãn \(\left(2014^{2014}+1\right)\) chia hết cho \(n^3+2012n\)
Ta có: \(n^3+2012n=\left(n^3-n\right)+2013n=n\left(n-1\right)\left(n+1\right)+2013n\)
Vì: \(n-1,n,n+1\) là ba số nguyên liên tiếp nên có 1 số chia hết cho 3
Suy ra \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 3, mà 2013 chia hết cho 3 nên \(\left(n^3+2012n\right)\) chia hết cho 3 (1)
Mặt khác: \(2014^{2014}+1=\left(2013+1\right)^{2014}+1\) chia 3 dư 2 ( vì 2013 chia hết cho 3) (2)
Từ (1) và (2) dẫn đến điều giả sử trên là vô lý, tức là không có số nguyên n nào thoả mãn đề bài toán đã cho
d.violet.vn//uploads/resources/present/3/652/138/preview.swf
Chứng minh bằng phản chứng :
Giả sử rằng tồn tại ít nhất một số tự nhiên n sao cho thỏa mãn \(n^2+7n+2014\) chia hết cho 9
Khi đó đặt n = 9k (k thuộc N)
Ta có \(n^2+7n+2014=\left(9k\right)^2+7.\left(9k\right)+2014=9.\left(9k^2+7k+223\right)+7\)
Từ đó ta thấy ngay điều giả sử sai, suy ra đpcm.
Ta có
A = n2 + 7n + 2014 = (n + 2)(n + 5) + 2004
Giả sử A chia hết cho 9 thì A = 9k
=> (n + 2)(n + 5) + 2004 = 9k (k tự nhiên)
Ta thấy 2004 chia hết cho 3 nên (n + 2)(n + 5) chia hết cho 3. Vậy 1 trong hai thừa số phải chia hết cho 3
Mà n + 5 - n - 2 = 3 chia hết cho 3 nên cả (n + 5) và (n + 2) đều chia hết cho 3.
Hay (n + 5)(n + 2) chia hết cho 9.
Mà A lại chia hết cho 9 nên 2004 chia hết cho 9 (vô lý)
Vậy không tồn tại số tự nhiên nào để A chia hết cho 9
\(3^{2012}-1=\left(4-1\right)^{2012}-1=BS4^{2012}+1-1\)
\(=BS4^{2012}=BS2^{2014}⋮2^{2014}\)
ĐPCM
Ta có: 20142014 chia hết cho 2014
Mà 2014 chia 1901 = 1 dư 113
=> 19012014 không chia hết cho 2014
đại ca tick em đi
vì 1901 ko chia hết cho 2014 => 19012014 ko chia hết cho 2014