Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
3S=3/2.5+3/5.8+3/8.11+...+3/101.104
3S=1/2-1/5+1/5-1/8+1/8-1/11+...+1/101-1/104
3S=1/2-1/104
S=51/104:3
S=17/104
Vậy S=17/104
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+........+\frac{1}{101.104}\)
\(\Rightarrow3S=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+.......+\frac{1}{101.104}\right)\)
\(=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{101.104}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+.........+\frac{1}{101}-\frac{1}{104}\)
\(=\frac{1}{2}-\frac{1}{104}\)
\(=\frac{51}{104}\)
\(\Rightarrow S=\frac{51}{104}:3=\frac{51}{104}.\frac{1}{3}\)
\(=\frac{7}{104}\)
VẬY \(S=\frac{7}{104}\)
Đặt C = \(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{2015.2018}\)
\(\Rightarrow3C=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{2015.2018}\)
\(\Rightarrow3C=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{2015}-\frac{1}{2018}\)
\(\Rightarrow3C=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)
\(\Rightarrow C=\frac{504}{1009}:3=\frac{168}{1009}\)
Vậy \(C=\frac{168}{1009}\)