Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt C = \(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{2015.2018}\)
\(\Rightarrow3C=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{2015.2018}\)
\(\Rightarrow3C=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{2015}-\frac{1}{2018}\)
\(\Rightarrow3C=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)
\(\Rightarrow C=\frac{504}{1009}:3=\frac{168}{1009}\)
Vậy \(C=\frac{168}{1009}\)
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)
Quên mất, bảo tối hôm đó vào làm :)). May là sang nay có ng k ms vào xem. Sorry
S=\(\frac{92-\left(1-\frac{8}{9}\right)-\left(1-\frac{8}{10}\right)-..-\left(1-\frac{8}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}=\frac{92-92+\left(\frac{8}{9}+\frac{8}{10}+...+\frac{8}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}\)
=\(\frac{8\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}=\frac{8}{\frac{1}{5}}=\frac{8.5}{1}=40\)
Vậy S=40
S=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
S=1-\(\frac{1}{2010}\)
S=\(\frac{2009}{2010}\)
k nha bn
\(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2008\times2009}+\frac{1}{2009\times2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
Vậy \(S=\frac{2009}{2010}\)
Học tốt #
40 nha bạn! Để hôm nào mk rảnh mk giải chi tiết ra cho! Thông cảm nha! ^_^
Bài làm:
Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)
Cái còn lại tự CM
Ta có \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)
3S=3/2.5+3/5.8+3/8.11+...+3/101.104
3S=1/2-1/5+1/5-1/8+1/8-1/11+...+1/101-1/104
3S=1/2-1/104
S=51/104:3
S=17/104
Vậy S=17/104
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+........+\frac{1}{101.104}\)
\(\Rightarrow3S=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+.......+\frac{1}{101.104}\right)\)
\(=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{101.104}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+.........+\frac{1}{101}-\frac{1}{104}\)
\(=\frac{1}{2}-\frac{1}{104}\)
\(=\frac{51}{104}\)
\(\Rightarrow S=\frac{51}{104}:3=\frac{51}{104}.\frac{1}{3}\)
\(=\frac{7}{104}\)
VẬY \(S=\frac{7}{104}\)