Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`2 : x = x : 8/49`
`<=> x^2 = 16/49`
`<=> x = +-4/7`
a: \(\dfrac{1}{7}\cdot\dfrac{3}{8}+\dfrac{1}{7}\cdot\dfrac{5}{8}+\dfrac{\left(-1\right)^{2023}}{7}\)
\(=\dfrac{1}{7}\left(\dfrac{3}{8}+\dfrac{5}{8}\right)-\dfrac{1}{7}\)
\(=\dfrac{1}{7}-\dfrac{1}{7}=0\)
b: \(-3-\dfrac{16}{23}-\sqrt{\dfrac{4}{49}}-\dfrac{7}{23}+\dfrac{\left(-3\right)^2}{7}\)
\(=-3-\left(\dfrac{16}{23}+\dfrac{7}{23}\right)-\dfrac{2}{7}+\dfrac{9}{7}\)
\(=-3-\dfrac{23}{23}+\dfrac{7}{7}\)
=-3-1+1
=-3
c: \(\dfrac{4^2\cdot0,2^3}{2^6}\)
\(=\dfrac{2^4\cdot0,008}{2^6}=\dfrac{0.008}{4}=0.002\)
1) \(125^5:25^7\)
\(=\left(5^3\right)^5:\left(5^2\right)^7\)
\(=5^{15}:5^{14}\)
= 5
2) \(27^8:9^9\)
\(=\left(3^3\right)^8:\left(3^2\right)^9\)
\(=3^{24}:3^{18}\)
\(=3^6\)
3) \(36^5:6^8\)
\(=\left(6^2\right)^5:6^8\)
\(=6^{10}:6^8\)
\(=6^2\)
4) \(49^6:7^{10}\)
\(=\left(7^2\right)^6:7^{10}\)
\(=7^{12}:7^{10}=7^2\)
5) \(7^{20}:49^9\)
\(=7^{20}:\left(7^2\right)^9\)
\(=7^{20}:7^{18}=7^2\)
6) \(\frac{1}{2^{10}}:\frac{1}{8^3}\)
\(=\frac{1}{2^{10}}:\frac{1}{\left(2^3\right)^3}\)
\(=\frac{1}{2^{10}}:\frac{1}{2^9}=\frac{1}{2^{10}}.\frac{2^9}{1}=\frac{1}{2}\)
7) \(\left(-\frac{1}{2}\right)^{21}:\frac{1}{4^{10}}\)
\(=\frac{\left(-1\right)^{21}}{2^{21}}:\frac{1}{\left(2^2\right)^{10}}\)
\(=-\frac{1}{2^{21}}:\frac{1}{2^{20}}=-\frac{1}{2^{21}}.\frac{2^{20}}{1}\)
\(=-\frac{1}{2}\)
8) \(\frac{1}{16^5}:\left(-\frac{1}{2}\right)^{18}\)
\(=\frac{1}{\left(2^4\right)^5}:\frac{\left(-1\right)^{18}}{2^{18}}\)
\(=\frac{1}{2^{20}}:\frac{1}{2^{18}}\)
\(=\frac{1}{2^{20}}.\frac{2^{18}}{1}=\frac{1}{4}\)
9) \(\frac{1}{5^{30}}:\frac{1}{25^{14}}\)
\(=\frac{1}{5^{30}}:\frac{1}{\left(5^2\right)^{14}}\)
\(=\frac{1}{5^{30}}:\frac{1}{5^{28}}=\frac{1}{25}\)
a: \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}\cdot\sqrt{\dfrac{49}{4}}\right):\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]:\dfrac{1704}{445}\)
\(=\left(\dfrac{55}{3}:15+\dfrac{26}{3}\cdot\dfrac{7}{4}\right):\left[\left(12+\dfrac{1}{3}+8+\dfrac{6}{7}\right)-\dfrac{7}{18}\right]\cdot\dfrac{445}{1704}\)
\(=\left(\dfrac{55}{45}+\dfrac{91}{6}\right):\left[20+\dfrac{101}{126}\right]\cdot\dfrac{445}{1704}\)
\(=\dfrac{295}{18}:\dfrac{2621}{126}\cdot\dfrac{445}{1704}\)
\(=\dfrac{295}{18}\cdot\dfrac{126}{2621}\cdot\dfrac{445}{1704}\simeq0,21\)
b: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
c: \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{n}{n+1}\)
\(=\dfrac{1}{n+1}\)
d: \(-66\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)+124\cdot\left(-37\right)+63\cdot\left(-124\right)\)
\(=-66\cdot\dfrac{33-22+6}{66}+124\left(-37-63\right)\)
\(=-17-12400=-12417\)
e: \(\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
\(=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)
\(=\dfrac{7}{4}\cdot33\cdot\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)
\(=33\cdot\dfrac{7}{4}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(=33\cdot\dfrac{7}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)
\(=33\cdot\dfrac{7}{4}\cdot\dfrac{4}{21}=\dfrac{33\cdot1}{3}=11\)
\(\frac{25^4\cdot7^2+5^8\cdot49}{5^8\cdot2^3-25^4}=\frac{5^8\cdot7^2+5^8\cdot7^2}{5^8\cdot2^3-5^8}=\frac{5^8\cdot7^2\cdot\left(1+1\right)}{5^8\cdot\left(2^3-1\right)}=\frac{2\cdot5^8\cdot7^2}{5^8\cdot7}=2\cdot7=14\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}< 5.\frac{1}{25}+10.\frac{1}{30}+10.\frac{1}{40}\)
\(A< \frac{1}{5}+\frac{1}{3}+\frac{1}{4}< \frac{1}{4}+\frac{1}{3}+\frac{1}{4}=\frac{5}{6}\left(đpcm\right)\)
x = 3 nha
\(\frac{1}{8}+2x=\frac{49}{8}\)
\(\Leftrightarrow2x=\frac{48}{8}\)
\(\Leftrightarrow2x=6\Leftrightarrow x=3\)