Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(64^x:16^x=256\)
\(\Rightarrow\left(2^6\right)^x:\left(2^4\right)^x=2^8\)
\(\Rightarrow2^{6x}:2^{4x}=2^8\)
\(\Rightarrow2^{6x-4x}=2^8\)
\(\Rightarrow2^{2x}=2^8\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
b) \(\dfrac{-2401}{7^x}=-7\)
\(\Rightarrow\dfrac{-7^4}{7^x}=-7\)
\(\Rightarrow-7^{4-x}=-7\)
\(\Rightarrow7^{4-x}=7\)
\(\Rightarrow4-x=1\)
\(\Rightarrow x=4-1\)
\(\Rightarrow x=3\)
c) \(\dfrac{64}{\left(-4\right)^x}=-256\)
\(\Rightarrow\left(-4\right)^x=\dfrac{64}{-256}\)
\(\Rightarrow\left(-4\right)^x=-4\)
\(\Rightarrow\left(-4\right)^x=\left(-4\right)^1\)
\(\Rightarrow x=1\)
\(a) 64^x:16^x=256\\\Rightarrow (64:16)^x=256\\\Rightarrow 4^x=4^4\\\Rightarrow x=4\\---\)
\(b,\dfrac{-2401}{7^x}=-7\)
\(\Rightarrow7^x=-2401:\left(-7\right)\)
\(\Rightarrow7^x=343\)
\(\Rightarrow7^x=7^3\)
\(\Rightarrow x=3\)
\(c,\dfrac{64}{\left(-4\right)^x}=-256\)
\(\Rightarrow\left(-4\right)^x=64:\left(-256\right)\)
\(\Rightarrow\left(-4\right)^x=-\dfrac{1}{4}\)
\(\Rightarrow\left(-4\right)^x=\left(-4\right)^{-1}\)
\(\Rightarrow x=-1\)
#\(Toru\)
\(a,16^x:4^x=16\)
\(\left(4^x\right)^2:4^x=4^2\)
\(\Rightarrow4^x=4^2\Leftrightarrow x=2\)
\(b,2^{-1}.2^x+4.2^x=72\)
\(\Rightarrow2^{x-1}+2^{x+2}=72\)
\(\Rightarrow2^{x-1}\left(1+2^3\right)=72\)
\(\Rightarrow2^{x-1}=72:9=8=2^3\)
\(\Rightarrow x=4\)
\(c,\left(2^x+1\right)^3=-64\)
\(\Rightarrow2^x+1=-4\)
\(\Rightarrow2^x=-5\)
+) \(\left(x-3\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^2=4^2\\\left(x-3\right)^2=\left(-4\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)
Vậy x = 7 hoặc x = -1
+) \(\left(1-3x\right)^3=-64\)
\(\Rightarrow\left(1-3x\right)^3=\left(-4\right)^3\)
\(\Rightarrow1-3x=-4\)
\(\Rightarrow3x=1+4\)
\(\Rightarrow3x=5\)
\(\Rightarrow x=5:3\)
\(\Rightarrow x=\frac{5}{3}\)
Vậy \(x=\frac{5}{3}\)
+) \(x^{13}=27.x^{10}\)
\(\Rightarrow x^{13}:x^{10}=27\)
\(\Rightarrow x^3=27\)
\(\Rightarrow x^3=3^3\)
\(\Rightarrow x=3\)
Vậy x = 3
+) \(\left(4x-1\right)^2=\left(1-4x\right)^4\)
\(\Rightarrow\left(4x-1\right)^2=\left(4x-1\right)^4\)
\(\Rightarrow\left(4x-1\right)^2-\left(4x-1\right)^4=0\)
\(\Rightarrow\left(4x-1\right)^2\left[1-\left(4x-1\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\1-\left(4x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\\left(4x-1\right)^2=1\end{cases}}\)
TH 1 : \(\left(4x-1\right)^2=0\Rightarrow4x-1=0\Rightarrow4x=1\Rightarrow x=\frac{1}{4}\)
TH 2 : \(\left(4x-1\right)^2=1\Rightarrow\orbr{\begin{cases}4x-1=1\\4x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}4x=2\\4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{4};\frac{1}{2};0\right\}\)
_Chúc bạn học tốt_
a, (x-3)^2 = 16
=> (x-3)^2=4^2
=> x-3=4
=> x= 4+3
=> x = 7 .Vậy x =7
b,(1-3x)^3 = 64
=> ( 1-3x)^3 = 4^3
=> 1-3x = 4
=> 3x = 1-4
=> 3x = -3
=> x = -1 . Vậy x = -1
c, x^13 = 27.x^10
=> x^13 : x^10 = 27
=> x^3 = 3^3
=> x = 3 . Vậy x = 3
a. x2 - 1/4 = 0
x2 = 1/4
x2 = (1/2)2
=>x=1/2
b. x2 + 16 = 0
=>x2= -16 (vô lí)
=>ko tồn tại x tm~
c. x3 + 27 = 0
x3= -27
x3= (-3)3
=>x= -3
d. 2x3 - 16 = 0
x3 - 8 = 0
x3=8=23
=>x=2
e.[( - 0,5)3] = 1/64 =>????
h. (2n)2 = 64
22n=26
=>2n=6 => n=3
a) x = 1/2 hoặc x = -1/2
b) Ko có giá trị của x thỏa mãn
c) x = -3
d) x = 2 hoặc x = -2
e) Ko thấy x thì sao giải đc
h) n = 3
a, ĐKXĐ:\(x\ge1\)
\(\sqrt{x-1}=3\\ \Rightarrow x-1=9\\ \Rightarrow x=10\)
\(b,x^2-64=0\\ \Rightarrow\left(x-8\right)\left(x+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\\ c,x^2+16=25\\ \Rightarrow x^2=9\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ d,ĐKXĐ:x\ge0\\ \left|\sqrt{x}-3\right|+3=9\\ \Rightarrow\left|\sqrt{x}-3\right|=6\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}-3=-6\\x-3=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}=-3\left(vô.lí\right)\\x=9\left(tm\right)\end{matrix}\right.\)