Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
a) \(4\dfrac{1}{3}:\dfrac{x}{4}=6:0,3\)
\(\dfrac{13}{3}:\dfrac{x}{4}=20\)
\(\dfrac{x}{4}=\dfrac{13}{3}:20\)
\(\dfrac{x}{4}=\dfrac{13}{3}\cdot\dfrac{1}{20}\)
\(\dfrac{x}{4}=\dfrac{13}{60}\)
\(x=\dfrac{13}{60}\cdot4\)
Vậy \(x=\dfrac{13}{15}\)
b)\(2^3:4.2^{\left(x+1\right)}=64\)
\(8:4.2^{\left(x+1\right)}=64\)
\(2.2^{\left(x+1\right)}=64\)
\(2\cdot2^x.2=64\)
\(4.2^x=64\)
\(2^x=64:4\)
\(2^x=16\)
\(2^x=2^4\)
Vậy \(x=4\)
a)\(\left(\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^4.2^3=3-1+\frac{1}{16}.8=3-1+\frac{1}{2}=\frac{5}{2}\\ \)
b)\(2^2.2^3.\left(\frac{2}{3}\right)^{-2}=2^5.\frac{9}{4}=72\)
c)\(\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^2.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^5:\left(\frac{3}{2}\right)^3=\frac{9}{128}\)
2)
\(3^{x+1}=9^x\Leftrightarrow3^x.3=9^x\Rightarrow3=9^x:3^x\Rightarrow3=3^x\Rightarrow x=1\)
\(\left(x-0,1\right)^2=6,25\Leftrightarrow\left(x-0,1\right)^2=2,5^2\Rightarrow\left(x-0,1\right)=2,5\Rightarrow x=2,5+0,1=2,6\)
\(3^{2x-1}=243\Leftrightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow2x=6\Rightarrow x=3\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\Rightarrow x=1\)
\(\left(x-3\right)^2=16\)
\(\Rightarrow\left(x-3\right)^2=4^2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
b) (x-1)x+2 =(x-1)2
=> x+2=2
=> x=0
vậy
c) (1-3x)3=-64
=> 1-3x=-4
=> -3x=-4-1
=> -3x=-5
=> x=5/3
vậy ....
Làm nốt ::v
\(a.\left(x+2\right)^2=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\Leftrightarrow\left(x+2\right)^2=\dfrac{1}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{\dfrac{1}{6}}\\x+2=-\sqrt{\dfrac{1}{6}}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{1}{6}}-2\\x=-\sqrt{\dfrac{1}{6}}-2\end{matrix}\right.\)
KL...........
\(a,16^x:4^x=16\)
\(\left(4^x\right)^2:4^x=4^2\)
\(\Rightarrow4^x=4^2\Leftrightarrow x=2\)
\(b,2^{-1}.2^x+4.2^x=72\)
\(\Rightarrow2^{x-1}+2^{x+2}=72\)
\(\Rightarrow2^{x-1}\left(1+2^3\right)=72\)
\(\Rightarrow2^{x-1}=72:9=8=2^3\)
\(\Rightarrow x=4\)
\(c,\left(2^x+1\right)^3=-64\)
\(\Rightarrow2^x+1=-4\)
\(\Rightarrow2^x=-5\)
a) 16^x : 4^x = 16
<=> ( 16 : 4 )^x = 16
<=> 4^x = 16
<=> 4^x = 4^2
=> x = 2
Vậy x =2