K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

\(\left(\dfrac{3x}{2}-1\right)^2-\dfrac{x}{2}\cdot\left(\dfrac{5x}{2}-2\right)\le0\) (1)

\(\Leftrightarrow\dfrac{9x^2}{4}-\dfrac{6x}{2}+1-\dfrac{x}{2}\cdot\dfrac{5x-4}{2}\le0\)

\(\Leftrightarrow\dfrac{9x^2}{4}-3x+1-\dfrac{x\left(5x-4\right)}{4}\le0\)

\(\Leftrightarrow\dfrac{9x^2}{4}-3x+1-\dfrac{5x^2-4x}{4}\le0\)

\(\Leftrightarrow9x^2-12x+4-\left(5x^2-4x\right)\le0\)

\(\Leftrightarrow9x^2-12x+4-5x^2+4x\le0\)

\(\Leftrightarrow4x^2-8x+4\le0\)

\(\Leftrightarrow x^2-2x+1\le0\)

\(\Leftrightarrow\left(x-1\right)^2\le0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{1\right\}\)

a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)

\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)

=>3x+5<10x-30

=>-7x<-35

hay x>5

b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)

\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)

=>14x-80>-11x

=>25x>80

hay x>16/5

a: =>2x^2+8x-3x-12<2x^2+2

=>5x<14

=>x<14/5

b: =>\(\dfrac{9x-3-\left(5x+1\right)\left(x-2\right)}{3\left(x-2\right)}-4>0\)

=>\(\dfrac{9x-3-5x^2+10x-x+2-12\left(x-2\right)}{3\left(x-2\right)}>0\)

=>\(\dfrac{-5x^2+18x-1-12x+24}{3\left(x-2\right)}>0\)

=>\(\dfrac{-5x^2+6x+23}{x-2}>0\)

TH1: x-2>0 và -5x^2+6x+23>0

=>x>2 và \(\dfrac{3-2\sqrt{31}}{5}< x< \dfrac{3+2\sqrt{31}}{5}\)

=>\(2< x< \dfrac{3+2\sqrt{31}}{5}\)

TH2: x-2<0 và -5x^2+6x+23<0

=>x<2 và \(\left[{}\begin{matrix}x< \dfrac{3-2\sqrt{31}}{5}\\x>\dfrac{3+2\sqrt{31}}{5}\end{matrix}\right.\)

=>\(x< \dfrac{3-2\sqrt{31}}{5}\)

[Lớp 8]Bài 1. Giải phương trình sau đây:a) \(7x+1=21;\)b) \(\left(4x-10\right)\left(24+5x\right)=0;\)c) \(\left|x-2\right|=2x-3;\)d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\) Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\) Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\) Bài 4. Giải bài toán bằng cách lập phương...
Đọc tiếp

undefined

[Lớp 8]

Bài 1. Giải phương trình sau đây:

a) \(7x+1=21;\)

b) \(\left(4x-10\right)\left(24+5x\right)=0;\)

c) \(\left|x-2\right|=2x-3;\)

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)

 

Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:

                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)

 

Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)

 

Bài 4. Giải bài toán bằng cách lập phương trình:

Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. 

Tính quãng đường AB.

 

Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.

a) Chứng minh: ΔHAC đồng dạng với ΔABC;

b) Chứng minh AH2=AD.AB;

c) Chứng minh AD.AB=AE.AC;

d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)

9
26 tháng 3 2021

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

a: Ta có: \(3x-\left(3x+2\right)=x+3\)

\(\Leftrightarrow x+3=-2\)

hay x=-5

b: Ta có: \(\dfrac{5x-1}{4}+\dfrac{2x-1}{3}=\dfrac{3x}{2}\)

\(\Leftrightarrow15x-3+8x-4=18x\)

\(\Leftrightarrow5x=7\)

hay \(x=\dfrac{7}{5}\)

12 tháng 4 2022

g.\(\dfrac{1-3x}{6}+x-1=\dfrac{x+2}{2}\)

\(\Leftrightarrow\dfrac{\left(1-3x\right)+6\left(x-1\right)}{6}=\dfrac{3\left(x+2\right)}{6}\)

\(\Leftrightarrow\left(1-3x\right)+6\left(x-1\right)=3\left(x+2\right)\)

\(\Leftrightarrow1-3x+6x-6=3x+6\)

\(\Leftrightarrow-5=6\left(vô.lí\right)\)

Vậy pt vô nghiệm

12 tháng 4 2022

h.\(\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)

\(\Leftrightarrow\dfrac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\dfrac{8\left(3x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-100-2\left(3x+2\right)=8\left(3x-1\right)\)

\(\Leftrightarrow30x+15-100-6x-4=24x-8\)

\(\Leftrightarrow-89=-8\left(vô.lí\right)\)

Vậy pt vô nghiệm

24 tháng 4 2023

`a,` \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

`<=> (5(5x+2))/30 - (10(8x-1))/30 = (6(4x+2))/30 - (5.30)/30`

`<=> 5(5x+2) - 10(8x-1) =6(4x+2) - 5.30`

`<=> 25x + 10 - 80x + 10 = 24x+12 - 150`

`<=> -55x +20 = 24x-138`

`<=> -55x -24x=-138-20`

`<=>-79x=-158`

`<=> x=2`

Vậy pt có nghiệm `x=2`

`b,` \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x-2\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne0\end{matrix}\right.\)

Ta có : `(x+2)/(x-2) -1/x = 2/(x(x-2))`

`<=> (x(x+2))/(x(x-2)) - (x-2)/(x(x-2))  = 2/(x(x-2))`

`=> x^2 +2x - x +2 = 2`

`<=> x^2 + x =0`

`<=>x(x+1)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-1\end{matrix}\right.\)

Vậy pt có nghiệm `x=-1`

`c,2x^3 + 6x^2 =x^2 +3x`

`<=> 2x^3 + 6x^2 -x^2 -3x=0`

`<=> 2x^3 + 5x^2 -3x=0`

`->` Đề có sai ko ạ ?

`d,` \(\left|x-4\right|+3x=5\) `(1)`

Thường hợp `1` : `x-4 >= 0<=> x >=0` thì phương trình `(1)` thở thành :

`x-4 = 5-3x`

`<=> x+3x=5+4`

`<=> 4x=9`

`<=> x= 9/4 (t//m)`

Trường hợp `2` : `x-4< 0<=> x<0` thì phương trình `(1)` trở thành :

`-(x-4) =5-3x`

`<=> -x +4=5-3x`

`<=> -x+3x=5-4`

`<=> 2x =1`

`<=>x=1/2 ( kt//m)`

Vậy phương trình có nghiệm `x=9/4`

 

 

24 tháng 4 2023

đây là phương trình mà đâu phải bất phương trình đâu

a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

=>3x-9-10x+2=-4

=>-7x-7=-4

=>-7x=3

=>x=-3/7

b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)

=>10-2x+7x-14=4x-4+x

=>5x-4=5x-4

=>0x=0(luôn đúng)

Vậy: S=R\{0;2}