Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{18}+\frac{1}{36}+\frac{1}{60}+...+\frac{1}{168}\)
\(\frac{1}{3}A=\frac{1}{54}+\frac{1}{108}+...+\frac{1}{504}\)
\(\frac{1}{3}A=\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{21.24}\)
\(=\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{21}-\frac{1}{24}\)
\(=\frac{1}{6}-\frac{1}{24}\)
\(=\frac{4-1}{24}=\frac{3}{24}=\frac{1}{8}\)
=> \(A=\frac{1}{8}:\frac{1}{3}\)\(=\frac{3}{8}\)
ko phải tui ra đề đâu đề thi của trường chuyên vĩnh yên cấp 2 do sở ra đề
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
(không ghi cách giải)
đáp án : a > 5/6
chúc bn
hok tốt
(ko ghi đề)
đáp án : a > 5 / 6
chúc b
hk tốt
1/31 + 1/32 + 1/33 + ... + 1/90
= (1/31 + 1/32 + ... + 1/60) + (1/61 + 1/62 + ... + 1/90)
> 1/60 × 30 + 1/90 × 30
> 1/2 + 1/3
> 5/6
A = 1/31 + 1/32 + 1/33 + ... + 1/89 + 1/90 ..... 5/6
A = 5/6 = 1/2 + 1/3
Ta đặt : B = 1/31 + 1/32 + 1/33 + ... + 1/60 ( 30 phân số )
C = 1/61 + 1/62 + 1/63 + .... + 1/90 ( 30 phân số )
Ta có : B = 1/31 + 1/32 + 1/33 + ... + 1/60 > 1/60 + 1/60 + 1/60 + ... + 1/60 = 30 x 1/60 = 1/2
C = 1/61 + 1/62 + 1/63 + ... + 190 > 1/90 + 1/90 + 1/90 + .... + 1/90 = 30 x 1/90 = 1/3
Vì A = B + C > 1/2 + 1/3 = 5/6 nên 1/31 + 1/32 + 1/33 + .. + 1/89 + 1/90 > 5/6
A=1/31+1/32+....+1/89+1/90>5/6 -vì dãy tổng A gồm 60 phân số mà phân số 1/60 nằm ở giữa (số tt 30)
xét :1/59+1/61>2/60 (1/59+1/61=(59+61)/59*61=120/(60^2-1)>12...
tương tự:1/58+1/62>2/60
:1/57+1/63 >2/60 cứ như vậy có tới 29 cặp lẻ 1/90 và số 1/60 mà ta dùng so sánh
do đó khi cộng vào ta được A.>59/60>50/60=5/6 đpcm
a) 5/30+15/90+25/150+35/210+45/270
=1/6+1/6+1/6+1/6+1/6
=1/6 x 5
=5/6
b) 1/2+1/6+1/12+1/20+....+1/56
=1/1x2+1/2x3+1/3x4+1/4x5+.....1/7x8
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.......-1/7+1/7-1/8
=1/1-1/8
=7/8
c) mình chịu
Đây là toán nâng cao chuyên đề dãy số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
A = \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\) + \(\dfrac{1}{36}\) + \(\dfrac{1}{60}\) + \(\dfrac{1}{90}\) + ... + \(\dfrac{1}{216}\) + \(\dfrac{1}{270}\)
A = \(\dfrac{1}{3}\) \(\times\) (\(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + .. + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\))
A = \(\dfrac{1}{3}\) \(\times\) (\(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\) + \(\dfrac{1}{4\times5}\) + ... + \(\dfrac{1}{8\times9}\) + \(\dfrac{1}{9\times10}\)
A = \(\dfrac{1}{3}\) x (\(\dfrac{1}{1}-\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + .. + \(\dfrac{1}{8}-\dfrac{1}{9}\) + \(\dfrac{1}{9}-\dfrac{1}{10}\))
A = \(\dfrac{1}{3}\) x (\(\dfrac{1}{1}\) - \(\dfrac{1}{10}\))
A = \(\dfrac{1}{3}\) x \(\dfrac{9}{10}\)
A = \(\dfrac{3}{10}\) < 8
Vậy A = \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\) + \(\dfrac{1}{36}\) + ... + \(\dfrac{1}{216}\) + \(\dfrac{1}{270}\) < 8