Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: 12 chia hết cho n
mà n là số tự nhiên
nên \(n\in\left\{1;2;3;4;6;12\right\}\)
b: 16 chia hết cho n-1
=>\(n-1\inƯ\left(16\right)\)
mà n-1>=-1(n là số tự nhiên nên n>=0)
nên \(n-1\in\left\{-1;1;2;4;8;16\right\}\)
=>\(n\in\left\{0;2;3;5;9;17\right\}\)
c: 9 chia hết cho n+1
=>\(n+1\inƯ\left(9\right)\)
mà n+1>=1(n>=0 do n là số tự nhiên)
nên \(n+1\in\left\{1;3;9\right\}\)
=>\(n\in\left\{0;2;8\right\}\)
Bài 1:
Gọi số dư khi chia 346,414,539 cho a là $r$. ĐK: $r< a$
Ta có:
$346-r\vdots a$
$414-r\vdots a$
$539-r\vdots a$
Suy ra:
$539-r-(414-r)\vdots a\Rightarrow 125\vdots a$
$539-r-(346-r)\vdots a\Rightarrow 193\vdots a$
$(414-r)-(346-r)\vdots a\Rightarrow 68\vdots a$
$\Rightarrow a=ƯC(125,193,68)$
$\Rightarrow ƯCLN(125,193,68)\vdots a$
$\Rightarrow 1\vdots a\Rightarrow a=1$
Bài 2:
Vì $ƯCLN(a,b)=16$ nên đặt $a=16x, b=16y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Ta có:
$a+b=16x+16y=128$
$\Rightarrow x+y=8$
Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (7,1)$
$\Rightarrow (a,b)=(16, 112), (48,80), (80,48), (112,16)$