Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
Phân tích đa thức thành nhân tử.
14x2 -21xy2+28x2y2
= 7x(2x-3y2+4xy2)
a) 3x - 3y
= 3 ( x- y )
b) 2x^2 + 5x^3 + x^2y
= x^2 ( 2+ 5x + y)
c) 14x^2 --21xy^2 + 28x^2y^2
= 7x ( 2x - 3y^2 + 4xy^2)
d) 4x^3 - 14x^2
= x^2 ( 4x - 14 )
e) 5y^10 + 15y^6
= 5y^6 (y^4 + 3 )
f) 9x^2y^2 + 15x^2y -21xy
= 3xy( 3xy + 5x - 7)
g) x( y-1 ) - y ((y-1)
=(y -1) (x-y)
\(a,4y\left(x-1\right)-\left(1-x\right)\)
\(=4y\left(x-1\right)+\left(x-1\right)\)
\(=\left(4y+1\right)\left(x-1\right)\)
\(b,18x^2\left(3+x\right)+3\left(x+3\right)\)
\(=\left(18x^2+3\right)\left(3+x\right)\)
a)
\(14x^2y-21xy^2+28x^2y^2\)
\(=7xy(2x-3y+4xy)\)
b) \(x(x+y)-5x-5y=x(x+y)-5(x+y)=(x-5)(x+y)\)
c)
\(10x(x-y)-8(y-x)=10x(x-y)+8(x-y)\)
\(=(x-y)(10x+8)=2(x-y)(5x+4)\)
a. \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\left(2x-3y+4xy\right)\)
b. \(x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x-5\right)\left(x+y\right)\)
c. \(10x\left(x-y\right)-8\left(y-x\right)\)
\(=10x\left(x-y\right)+8\left(x-y\right)\)
\(=\left(10x+8\right)\left(x-y\right)\)
d. \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
e. Vì bài này giải không ra nên mình nghĩ nó sai đề, sửa lại tí nhé!
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+zy+z^2-3xy\right)\)
g. \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y^2\right)-4z^2\right]\)
\(=5\left(x-y+z\right)\left(x-y-z\right)\)
h. \(x^3-x+3x^2y+3xy^3+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
i. \(x^2+7x-8\)
\(=x^2-x+8x-8\)
\(=x\left(x-1\right)+8\left(x-1\right)\)
\(=\left(x+8\right)\left(x-1\right)\)
\(14x^2y-21xy^2+28x^2y\)
\(=42x^2y-21xy^2\)
\(=21xy\left(2x-y\right)\)