Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
\(A=\left(x-1\right)\left(x-6\right)\left(x-3\right)\left(x-4\right)+10\)
\(A=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+10\)
\(A=\left(x^2-7x\right)^2+18\left(x^2-7x\right)+72+10\)
\(A=\left(x^2-7x\right)^2+18\left(x^2-7x\right)+82\)
\(A=\left(x^2-7x\right)^2+2\left(x^2-7x\right).9+9^2+1\)
\(A=\left(x^2-7x+9\right)^2+1\)
Vì \(\left(x^2-7x+9\right)^2\ge0\)
\(\Leftrightarrow\left(x^2-7x+9\right)^2+1\ge1\)
suy ra đpcm
a: 3x-5>15-x
=>4x>20
hay x>5
b: \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)
=>3x2+x>3x2-12
=>x>-12
a) \(x^2+4x+4\)
\(=x^2+2\cdot2\cdot x+2^2\)
\(=\left(x+2\right)^2\)
b) \(4x^2-4x+1\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2\)
\(=\left(2x-1\right)^2\)
c) \(x^2-x+\dfrac{1}{4}\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2\)
d) \(4\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=\left[2\left(x+y\right)\right]^2-2\cdot2\left(x+y\right)\cdot1+1^2\)
\(=\left[2\left(x+y\right)-1\right]^2\)
\(=\left(2x+2y-1\right)^2\)
a)\(\left|x-2\right|\ge1\)
* x-2 \(\ge\)0 \(\Rightarrow\)x\(\ge\)2
x-2\(\ge\)1 \(\Leftrightarrow\)x\(\ge\)3 ( t/m )
*x-2<0\(\Rightarrow x< 2\)
-x+2 \(\ge1\)\(\Leftrightarrow\) -x\(\ge\)-1 \(\Leftrightarrow x\le1\)(t/m)
Vây bpt co nghiem la x\(\ge\)3;x\(\le1\)
b)\(\left|2-x\right|< 3\)
* \(2-x\ge0\Rightarrow x\le2\)
\(2-x< 3\Leftrightarrow-x< 1\Leftrightarrow x>-1\)(t/m)
*\(2-x< 0\Leftrightarrow-x< -2\Rightarrow x>2\)
\(-2+x< 3\Leftrightarrow x< 5\)(t/m)
Các ý còn lại tương tự nhé
Ta có:
(x-1)(x-3)(x-4)(x-6)+9=(x2-7x+6)(x2-7x+12)+9
Đặt x2-7x+6=y
<=>y(y+6)+9=y2+6y+9=(y+3)2 lớn hơn hoặc bàng 0