\(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}+1\) chia hết cho...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2020

Ta có: \(g\left(x\right)=x^2-x\)có nghiệm x=0 và x=1 (vì \(x^2-x=x\left(x-1\right)\))

Để chứng minh \(f\left(x\right)⋮g\left(x\right)\), ta sẽ chứng minh \(f\left(x\right)\)cũng có nghiệm x=0 và x=1.

Thay x=0 vào \(f\left(x\right)\):\(f\left(0\right)\)\(=\left(-1\right)^{2018}+1^{2018}-2=0\)

Thay x=1 vào \(f\left(x\right)\)\(f\left(1\right)=1^{2018}+1^{2018}-2=0\)

\(\Rightarrow\)x=0 và x=1 là hai nghiệm của \(f\left(x\right)\)

\(\Rightarrowđpcm\)

31 tháng 7 2020

\(g\left(x\right)=x^2-x\)

g(x) có nghiệm\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)

Để chứng minh \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)thì ta chứng minh tất cả nghiệm của đa thức g(x) cũng là nghiệm của f(x) hay 1 và 0 là nghiệm của f(x) (1)

Thật vậy:\(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)

+) Thay x = 0 vào f(x), ta được: \(f\left(0\right)=\left(0^2+0-1\right)^{2018}+\left(0^2-0+1\right)^{2018}-2=1+1-2=0\)

+) Thay x = 1 vào f(x), ta được: \(f\left(1\right)=\left(1^2+1-1\right)^{2018}+\left(1^2-1+1\right)^{2018}-2=1+1-2=0\)

Qua hai kết quả trên ta suy ra f(x) có 2 nghiệm là 0 và 1 (2)

Từ (1) và (2) suy ra \(f\left(x\right)⋮g\left(x\right)\)(đpcm)

Đặt \(A=x^{20}+x^{10}+1\)

\(x^{50}+x^{10}+1\)

\(=x^{50}-x^{20}+A\)

\(=x^{20}\left(x^{30}-1\right)+A\)

\(=x^{20}\left(x^{10}-1\right)A+A\)

\(=\left(x^{30}-x^{20}+1\right)A\)

\(\left(x^{30}-x^{20}+1\right)A⋮A\)

\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)

28 tháng 10 2017

Ta có : \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2=\left(x-1\right).Q\left(x\right)+r\)(1)

\(\Rightarrow r\) là số dư

Thay x = 1 vào pt (1) ta có : \(\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)-2=\left(1-1\right).Q\left(1\right)+r\)

\(\Leftrightarrow1+1-2=r\Rightarrow r=0\)

Do phét chia trên có số dư là 0 nên \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2\) chia hết cho \(x-1\)

28 tháng 10 2017

bài 2

 f(x) = (x²+x-1)^10 + (x²-x+1)^10 -2 
f(1) = 1 + 1 - 2 = 0

=> x = 1 là nghiệm cua f(x)

=> f(x) chia hết cho x-1 

NV
11 tháng 4 2020

Câu 2:

Ta có:

\(P\left(x\right)=x^{100}+x^2+1\)

\(=x^{100}-x^{99}+x^{98}+x^{99}-x^{98}+x^{97}+...+x^3-x^2+x^2+x^2-x+1\)

\(=x^{98}\left(x^2-x+1\right)+x^{97}\left(x^2-x+1\right)+...+\left(x^2-x+1\right)\)

\(=\left(x^{98}+x^{97}+...+x+1\right)\left(x^2-x+1\right)\)

\(=Q\left(x\right).\left(x^{98}+x^{97}+...+x+1\right)\)

\(\Rightarrow P\left(x\right)⋮Q\left(x\right)\)

NV
11 tháng 4 2020

Câu 1:

Do P(x) bậc 3 và \(x^2-x+1\) bậc 2 nên đa thức thương có bậc 1, gọi đa thức thương có dạng \(ax+b\)

Do \(P\left(x\right)\) chia hết \(x-1\)\(x-2\) nên \(P\left(1\right)=P\left(2\right)=0\)

Do \(P\left(x\right)\) chia \(x^2-x+1\)\(2x-3\)

\(\Rightarrow P\left(x\right)=\left(ax+b\right).\left(x^2-x+1\right)+2x-3\)

Thay \(x=1\) ta được:

\(P\left(1\right)=\left(a+b\right)\left(1-1+1\right)+2-3=0\)

\(\Leftrightarrow a+b=1\)

Thay \(x=2\) ta được:

\(P\left(2\right)=\left(2a+b\right)\left(4-2+1\right)+4-3=0\)

\(\Leftrightarrow3\left(2a+b\right)=-1\Leftrightarrow6a+3b=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\6a+3b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=-\frac{7}{3}\end{matrix}\right.\)

\(\Rightarrow P\left(x\right)=\left(\frac{4}{3}x-\frac{7}{3}\right)\left(x^2-x+1\right)+2x-3\)

Bạn có thể nhân phá ra và rút gọn

25 tháng 5 2019

Áp dụng BĐT : ( a + b + c )2 \(\ge\)3 ( ab + bc + ac )

Ta có : \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge\frac{3\left(xy+y+x\right)}{xy+y+x}=3\)

đặt \(\frac{\left(x+y+1\right)^2}{xy+y+x}=A\)

ta có : \(A+\frac{1}{A}=\frac{8A}{9}+\frac{A}{9}+\frac{1}{A}\ge\frac{8.3}{9}+2\sqrt{\frac{A}{9}.\frac{1}{A}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

25 tháng 5 2019

Ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

Áp dụng ta được

\(\left(x+y+1\right)^2\ge3\left(x+y+xy\right)\)=> \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge3\)

Đặt \(\frac{\left(x+y+1\right)^2}{x+y+xy}=t\)(\(t\ge3\))

Khi đó

\(VT=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8}{9}t\ge\frac{2}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}t=3\\x=y=1\end{cases}}\)=> x=y=1

Lưu ý 

Nhiều người sẽ nhầm \(VT\ge2\)

Khi đó dấu bằng \(\left(x+y+1\right)^2=xy+x+y\)không xảy ra