Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{1}{13}+\frac{15}{21}+\frac{\left(-12\right)}{13}+\frac{2}{7}+\frac{2020}{2021}\)
\(=-\frac{1}{13}+\frac{15}{21}-\frac{12}{13}+\frac{6}{21}+\frac{2020}{2021}\)
\(=\left(-\frac{1}{13}-\frac{12}{13}\right)+\left(\frac{15}{21}+\frac{6}{21}\right)+\frac{2020}{2021}\)
\(=-1+1+\frac{2020}{2021}=\frac{2020}{2021}\)
a) A=6 -13 +(-14+15+16-17)+(-18+19+20-21)+...+(-2018+2019+2020-2021)+(-2022+2023+2024-2025) +2025
A=-7 +0 +0 +...+0+0 +2025= 2018
B) 7-9+(-10+11+12-13)+(-14+15+16-17)+...+(-2018+2019+2020-2021)+2021
B= -2+0+0+...+0+2021=2019
#Có gì không hiểu thì hỏi nha#
bài 1:
ssh của A là:
(151-3):2+1=75
A=(151+3)x75:2=5775
đáp số: 5775
ta có :
A = \(\dfrac{5^{2020}+1}{5^{2020}+1}\)
B = \(\dfrac{5^{2019}+1}{5^{2020}+1}\)
\(\Leftrightarrow\) B < A
a) \(A=2019.2021=\left(2020-1\right).\left(2020+1\right)=2020^2-1\)
\(B=2020.2020=2020^2\)
\(\Rightarrow2020^2-1< 2020^2\)\(\Rightarrow A< B\)
b) \(C=35.53-18=\left(34+1\right).53-18=34.53+53-18=34.53+34\)
mà \(D=35+53.34\)
\(\Rightarrow C=D\)
\(2019\times2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2=2020\times2020\)
Giải:
Ta có: N=2019+2020/2020+2021
=>N=2019/2020+2021 + 2020/2020+2021
Vì 2019/2020 > 2019/2020+2021 ; 2020/2021 > 2020/2020+2021
=>M>N
Vậy ...
Chúc bạn học tốt!
Ta có : \(\dfrac{2019}{2020}>\dfrac{2019}{2020+2021}\)
\(\dfrac{2020}{2021}>\dfrac{2020}{2020+2021}\)
\(\Rightarrow\dfrac{2019}{2020}+\dfrac{2020}{2021}>\dfrac{2019+2020}{2020+2021}\)
\(\Rightarrow M>N\)
a/
2020.2021=(2019+1)(2022-1)=
=2019.2022-2019+2022-1=2019.2022+2>2019.2022
b/
\(4^7=\left(2^2\right)^7=2^{14}< 2^{15}\)
c/
\(199^{20}< 200^{20}=\left(8.25\right)^{20}=\left(2^3.5^2\right)^{20}=2^{60}.5^{40}\)
\(2000^{15}=\left(16.125\right)^{15}=\left(2^4.5^3\right)^{15}=2^{60}.5^{45}\)
\(\Rightarrow2000^{15}=2^{60}.5^{45}>2^{60}.5^{40}>199^{20}\)
d/
\(31^{31}< 32^{31}=\left(2^5\right)^{31}=2^{155}\)
\(17^{39}>16^{39}=\left(2^4\right)^{39}=2^{156}\)
\(\Rightarrow17^{39}=2^{156}>2^{155}>31^{31}\)