
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
Vì \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)
=> x + 2020 = 0
=> x = -2020
Bài làm :
Ta có :
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)
\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)
\(\text{Vì : }\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy x=-2020

a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ

\(\dfrac{x+1}{2023}+\dfrac{x+2}{2022}=\dfrac{x+3}{2021}+\dfrac{x+4}{2020}\\ \Leftrightarrow\dfrac{x+1}{2023}+1+\dfrac{x+2}{2022}+1=\dfrac{x+3}{2021}+1+\dfrac{x+4}{2020}+1\\ \Leftrightarrow\dfrac{x+1+2023}{2023}+\dfrac{x+2+2022}{2022}-\dfrac{x+3+2021}{2021}-\dfrac{x+4+2020}{2020}=0\\ \Leftrightarrow\left(x+2024\right)\times\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)=0\\ \Rightarrow x+2024=0:\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)\\ \Rightarrow x+2024=0\\ \Rightarrow x=-2024\)

a/ Đề?
b/ \(\frac{1}{6}6^x+6^{x+2}=6^{10}+6^7\)
\(\Leftrightarrow6^{x-1}+6^{x+2}=6^{10}+6^7\)
\(\Leftrightarrow6^{x-1}\left(1+6^3\right)=6^7\left(1+6^3\right)\)
\(\Leftrightarrow6^{x-1}=6^7\Rightarrow x-1=7\Rightarrow x=8\)
c/ Hoàn toàn tương tự câu trên:
\(2^{x-1}+2^{x+1}=2^{12}+2^{10}\)
\(\Leftrightarrow2^{x-1}\left(1+2^2\right)=2^{10}\left(1+2^2\right)\)
\(\Leftrightarrow x=11\)

a
ĐK: \(x\ne5\)
\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\\ \Leftrightarrow\dfrac{x-5}{3}=\dfrac{12}{x-5}\\ \Leftrightarrow\left(x-5\right)^2=12.3=36\\ \Leftrightarrow\left\{{}\begin{matrix}x-5=6\\x-5=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=11\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
b
ĐK: \(x\ne0;x\ne-1\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{x}.\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2023}{4048}\\ \Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2023}{4048}=\dfrac{1}{4048}\\ \Leftrightarrow4048=x+1\\ \Leftrightarrow x=4047\left(tm\right)\)
a: =>(x-5)/3=12/(x-5)
=>(x-5)^2=36
=>x-5=6 hoặc x-5=-6
=>x=11 hoặc x=-1
b: =>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2023}{2024}\)
=>1/2-1/3+1/3-1/4+...+1/x-1/x+1=2023/4048
=>1/2-1/x+1=2023/4048
=>1/(x+1)=1/4048
=>x+1=4048
=>x=4047

câu a) mình chịu (dùng kiến thức lớp 12 chắc làm đc haha)
b) gt ⇒ \(\frac{1}{6}.6^{x+2}-6^x=6^{14}-6^{13}\)
⇒ \(6^{x+1}-6^x=6^{14}-6^{13}\)
⇒ \(6^x\left(6-1\right)=6^{13}\left(6-1\right)\)
⇒ \(x=13\)
c) gt ⇒ \(\frac{1}{2}.2^{x+4}-2^x=2^{13}-2^{10}\)
⇒ \(2^{x+3}-2^x=2^{13}-2^{10}\)
⇒ \(2^x\left(2^3-1\right)=2^{10}\left(2^3-1\right)\)
⇒ \(x=10\)
d) gt ⇒ \(\frac{1}{3}.3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
⇒ \(3^{x+3}-4.3^x=3^{16}-4.3^{13}\)
⇒ \(3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)
⇒ \(x=13\)
\(\frac13+\frac16+\frac{1}{10}+\cdots+\frac{2}{x\left(x+1\right)}=\) \(\frac{2021}{2023}\)
\(\frac12.\left(\frac13+\frac16+\frac{1}{10}+\cdots+\frac{2}{x\left(x+1\right)}\right)\) = \(\frac{2021}{2.2023}\)
\(\frac16+\frac{1}{12}+\frac{1}{20}\) + ...+ \(\frac{1}{x\left(x+1\right)}\) = \(\frac{2021}{2.2023}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\) + ... + \(\frac{1}{x\left(x+1\right)}\) = \(\frac{2021}{2.2023}\)
\(\frac12\) - \(\frac13\) + \(\frac13\) - \(\frac14\) + ... + \(\frac{1}{x}\) - \(\frac{1}{x+1}\) = \(\frac{2021}{2.2023}\)
\(\frac12-\frac{1}{x+1}\) = \(\frac{2021}{2023.2}\)
\(\frac{x+1-2}{2.\left(x+1\right)}\) = \(\frac{2021}{2.2023}\)
\(\frac{x+\left(1-1\right)}{2.\left(x+1\right)}\) = \(\frac{2021}{2.2023}\)
\(\frac{x-\left(2-1\right)}{2.\left(x+1\right)}\) = \(\frac{2021}{2.2023}\)
\(\frac{x-1}{x+1}\) = \(\frac{2021}{2023}\)
2023.(\(x-1\)) = 2021.(\(x+1\))
2023\(x\) - 2023 = 2021\(x\) + 2021
2023\(x-2021x\) = 2023 + 2021
2\(x\) = 4044
\(x\) = 4044 : 2
\(x\) = 2022
Vậy \(x=2022\)