Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi cạnh góc vuông là x(m) (x>0)
a/ Áp dụng định lí Pytago ta có 2x2=4<=>x2=2<=>x=\(\sqrt{2}\left(m\right)\)
b/Áp dụng định lí Pytago ta có 2x2=18<=>x2=9<=>x=3(m)
=> cạnh góc vuông 2 =(7\(\sqrt{2}\))2x2=98x2=196
=>cạnh góc vuông =\(\sqrt{196}=14\)\(\)
a) Gọi \(\Delta\)ABC vuông cân tại A có BC = 2 cm
Áp dụng định lý Pytago cho \(\Delta\)ABC vuông cân tại A ta có :
AB2 + AC2 = BC2
AB2 + AB2 = 2 ( Vì AB = AC)
2.AB2 = 4
=> AB2 = 2
=> AB = \(\sqrt{2}\)
Vậy AB = AC = \(\sqrt{2}\)(cm)
b) Gọi \(\Delta\)KFC vuông cân tại K có FC = \(\sqrt{2}\)(cm)
Áp dụng định lý Pytago cho \(\Delta\)KFC vuông cân tại K ta có :
FC2 = KF2 + KC2
(\(\sqrt{2}\))2 = 2. KF2 (vì KC = KF)
=> 2 = 2 . KF2
=> KF2 = 1
=> KF = 1 (cm)
Vậy KC = KF = 1 (cm)
Gọi D là trung điểm BC; E là trung điểm AC
Trong tam giác ABC có BC2 = AB2 + AC2 = 32 + 42 = 25
=> BC = 5
Trong tam giác vuông ABC có AD là đường trung tuyến ứng với cạnh huyền BC nên AD = BD = CD
mà BD = CD = BC/2 = 5/2 = 2,5 nên AD = 2,5
Ta có AG/AD = 2/3 => AG = (AD.2)/3 = (2,5 x 2)/3 = 5/3
a) Xét \(\Delta ABC\)vuông cân tại A
Áp dụng định lí Pi-ta-go ta có :
\(AB^2+AC^2=BC^2=2^2=4\Rightarrow2AB^2=4\Rightarrow AB^2=2\Rightarrow AB=\sqrt{2}\approx1,4\left(cm\right)\)
b) Xét \(\Delta ABC\)vuông cân tại A
Áp dụng định lí Pitago ta có :
\(AB^2+AC^2=BC^2=\sqrt{2}^2=4\Rightarrow2AB^2=4\Rightarrow AB^2=2\Rightarrow AB=\sqrt{2}\approx1,4\left(cm\right)\)
Câu a,b đều giống nhau cả :))
\(\sqrt{2}cm\)chứ không phải \(\sqrt{2cm}\)
Câu b để mình sửa lại nhé,mình nhầm trầm trọng
Thông cảm cho mk :))
b) Xét \(\Delta ABC\)vuông tại A có :
\(AB^2+AC^2=BC^2=\sqrt{2}^2=2\Rightarrow2AB^2=2\Rightarrow AB^2=1\Rightarrow AB=1\left(cm\right)\)
=> Độ dài cạnh góc vuông là 1cm.
gọi a,b lần lượt là 2 cạnh góc vuông ( a,b khác 0)
ta có: a=b ( tam giác đó cân)
áp dụng định lí Pitago vào tam giác, ta có:
( 7 \(\sqrt{ }\)2)2 = a2+ b2
98 = 2a2 ( a=b)
98/2 = a2
49 = a2
\(\Rightarrow\) a = 7
vậy cạnh góc vuông = 7
NHỚ CHO LIKE ĐẤY NHÉ!!!
Độ dài cạnh huyền là:
\(\sqrt{2^2\cdot2}=2\sqrt{2}\simeq3\)