K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)

\(\Rightarrow3x-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)=0\)

\(\Rightarrow3x-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)=0\)

\(\Rightarrow3x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)

\(\Rightarrow3x-\left(1-\frac{1}{99}\right)=0\)

\(\Rightarrow3x-\frac{98}{99}=0\)

\(\Rightarrow3x=0+\frac{98}{99}\)

\(\Rightarrow3x=\frac{98}{99}\)

\(\Rightarrow x=\frac{98}{99}:3\)

\(\Rightarrow x=\frac{98}{297}\)

7 tháng 7 2019

\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)

\(2\left(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}\right)=2.0\)

\(6x-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}-\frac{2}{63}-\frac{2}{99}=0\)

\(6x-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)=0\)

\(6x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)

\(6x-\left(1-\frac{1}{11}\right)=0\)

\(6x-\frac{10}{11}=0\)

\(6x=\frac{10}{11}\)

\(x=\frac{5}{33}\)

26 tháng 6 2016

\(A=1+1+1+1-\left(\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}\right)\)

\(A=4+\left(\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}\right)\)

\(A=4+\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)

\(A=4+\left(1-\frac{1}{9}\right)\)

\(A=4+\frac{8}{9}=\frac{44}{9}\)

Vậy A=44/9

26 tháng 9 2019

A = \(\frac{1}{3}+\frac{13}{35}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}+\frac{141}{143}\)

\(=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)\)

\(=\left(1+1+1+1+1+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)

\(=6-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)

\(=6-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=6-\left(1-\frac{1}{13}\right)\)

\(=6-1+\frac{1}{13}\)

\(=5+\frac{1}{13}\)

\(=\frac{66}{13}\)

\(\text{Vậy }A=\frac{66}{13}\)

5 tháng 1 2016

\(A=\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)
\(A=-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(\Rightarrow2A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99\cdot101}\right)\)
\(2A=-\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{99}-\frac{2}{101}\right)\)
\(2A=-\left(2-\frac{2}{101}\right)\)
\(2A=-\frac{200}{101}\)
\(\Rightarrow A=-\frac{100}{101}\)

28 tháng 2 2018

Đặt biểu thức trên là A, ta có:

\(A=\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)

\(\Rightarrow A=-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)

\(\Rightarrow A=-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)

\(\Rightarrow2A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)

\(\Rightarrow2A=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(\Rightarrow2A=-\left(1-\frac{1}{101}\right)\)

\(\Rightarrow2A=-\frac{100}{101}\)

\(\Rightarrow A=-\frac{100}{101}\div2=-\frac{50}{101}\)

12 tháng 9 2020

a ) \(-5=\frac{-5}{1}< 0\)và \(\frac{1}{63}>0\)

\(\Rightarrow-5< \frac{1}{63}\)

6 tháng 7 2019

a)\(\frac{1}{2}-2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\right)\)

=\(\frac{1}{2}-\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+.....+\frac{2}{48.50}\right)\)

=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{48}-\frac{1}{50}\right)\)

=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{50}\right)\)

=\(\frac{1}{50}\)

6 tháng 7 2019

\(1)a)\frac{1}{2}-2\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{24.25}\right)\)

\(=\frac{1}{2}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{24}-\frac{1}{25}\right)\)

\(=\frac{1}{2}-\left(1-\frac{1}{25}\right)\)

\(=\frac{1}{2}-\frac{24}{25}=\frac{-23}{50}\)

\(\)

15 tháng 6 2017

\(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{15}-\dfrac{1}{35}-\dfrac{1}{63}-...-\dfrac{1}{9999}\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{9999}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{99.101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{100}{101}\)

\(=\dfrac{1}{2}-\dfrac{50}{101}\)

\(=\dfrac{1}{202}.\)

15 tháng 6 2017

h nghĩ lại thấy mk ngu v~

26 tháng 9 2015

1/3 + 1/15 + 1/35 + 1/63

= 1/1.3 + 1/3.5 + 1/5.7 + 1/7.9

= 1/2 ( 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9 )

= 1/2 ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 )

= 1/2 ( 1 - 1/9 )

= 1/2 . 8/9

= 4/9

\(M=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right).....\left(\frac{1}{100}-1\right)\left(\frac{1}{121}-1\right)=\frac{-3}{4}.\frac{-8}{9}.....\frac{-99}{100}.\frac{-120}{121}\)

\(M=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.....\frac{-9.11}{10.10}.\frac{-10.12}{11.11}=\frac{-1}{2}.\frac{-12}{11}=\frac{12}{22}=\frac{6}{11}\)

\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{99}\)

\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{9.11}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{11}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(S=\frac{5}{11}\)

\(Q=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2013.2015}\)

\(Q=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)

\(Q=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(Q=\frac{1}{2}\left(1-\frac{1}{2015}\right)\)

\(Q=\frac{1007}{2015}\)

~ Đấng Ed :) ~