Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =3(x^2-y^2-4x+4y)
=3[(x-y)(x+y)-4(x-y)]
=3(x-y)(x+y-4)
b: \(=4x\left(x^2+y^2+2xy-16\right)\)
\(=4x\left[\left(x+y\right)^2-16\right]\)
\(=4x\left(x+y+4\right)\left(x+y-4\right)\)
c: \(=\left(x+4\right)^2-y^2=\left(x+4+y\right)\left(x+4-y\right)\)
d: \(=\left(x^2-1\right)\left(x^2-9\right)=\left(x-1\right)\left(x-3\right)\left(x+1\right)\left(x+3\right)\)
1) \(\left(3x^2-3y^2\right)-\left(12x-12y\right)\)
\(=3xy\left(x-y\right)-12\left(x-y\right)\)
\(=\left(3xy-12\right)\left(x-y\right)\)
2) \(4x^3+4xy^2+8x^2y-16x\)
\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)
\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)
Ta có : 3x2 - 3y2 - 12x + 12y
= (3x2 - 3y2) - (12x - 12y)
= 3(x2 - y2) - 12(x - y)
= 3(x - y)(x + y) - 4.3.(x - y)
= 3(x - y)(x + y - 4)
a) 3x2 - 3y2 - 12x + 12x
= 3( x2 - y2- 4x + 4x )
= 3( x - y)( x + y)
b) 4x3 + 4xy2 + 8x2y - 16x
= 4x( x2 + y2 + 2xy - 4)
= 4x[( x + y)2 - 22]
= 4x( x + y - 2)( x + y +2)
c) x4 - 5x2 + 4
= ( x2)2 - 2.2x2 + 22 - x2
= ( x2 - 2)2 - x2
= ( x2 - 2 - x)( x2 - 2 + x)
\(C=4x^2-4xy+y^2+4x^2-16x+16+1\)
\(=\left(2x-y\right)^2+(2x-4)^2+1\ge1\forall x;y\in R\)
Dấu "=" xảy ra<=> 2x-y=0 và 2x-4=0
<=>2x-y=0 và x=2 <=>y=4 và x=
Vậy....
\(B=3x^2-12x+16\)
\(=x^2-12x+36+2x^2-20\)
\(=\left(x-6\right)^2+2x^2-20\ge-20\forall x\in R\)
Dấu "=" xảy ra <=> \(\left(x-6\right)^2=0\)và \(2x^2=0\)
<=>x1 =6 và x2 =0
Vậy....
a, 25-x2+4xy-4y2
= 25-(x2-4xy+4y2)
= 52-(x-2y)2
= (5-x+2y)(5+x-2y)
Các biểu thức sau bạn tự chứng minh nhé
\(=\dfrac{4x\left(3x^2+4xy-2\right)}{3x^2+4xy-2}=4x\)