Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> (n+1) . [ (n-1) : 1 + 1 ] : 2 = 1830
=> (n+1) . n : 2 = 1830
=> n . (n+1) = 1830 . 2 = 3660 = 60 . 61
=> n = 60
k mk nha
Từ 1 -> n có : (n-1)+1=n (số số hạng)
Theo công thức tính tổng dãy số,ta có :
\(1+2+3+....+n=\frac{\left(n+1\right).n}{2}=1830=>\left(n+1\right).n=1830.2=3660=61.60\) (vì n.(n+1) là tích 2 số tự nhiên liên tiếp)
Vậy n=60
\(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{2n\left(n+1\right)\left(n+2\right)}=\dfrac{\left(n+2\right)-n}{2n\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{n+2}{2n\left(n+1\right)\left(n+2\right)}-\dfrac{n}{2n\left(n+1\right)\left(n+2\right)}=\dfrac{1}{2}\left[\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
\(1^2+2^2+...+n^2=1+2\left(1+1\right)+...+n\left(n-1+1\right)=1+2+1.2+3+2.3+...+n+\left(n-1\right)n\)
\(=\left(1+2+3+...+n\right)+\left[1.2+2.3+...+\left(n-1\right)n\right]=\dfrac{\left(n+1\right)\left(\dfrac{n-1}{1}+1\right)}{2}+\dfrac{1.2.3+2.3.3+...+\left(n-1\right)n.3}{3}=\dfrac{n\left(n+1\right)}{2}+\dfrac{1.2.3+2.3.\left(4-1\right)+...+\left(n-1\right)n\left[\left(n+1\right)-\left(n-2\right)\right]}{3}\)
\(=\dfrac{n\left(n+1\right)}{2}+\dfrac{1.2.3-1.2.3+2.3.4-...-\left(n-2\right)\left(n-1\right)n+\left(n-1\right)n\left(n+1\right)}{3}\)
\(=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}=\dfrac{3n\left(n+1\right)+2\left(n-1\right)n\left(n+1\right)}{6}=\dfrac{2n^3+3n^2+n}{6}=\dfrac{1}{3}n^3+\dfrac{1}{2}n^2+\dfrac{1}{6}n=\dfrac{1}{3}n\left(n^2+\dfrac{3}{2}n+\dfrac{1}{2}\right)=\dfrac{1}{3}n\left(n+\dfrac{1}{2}\right)\left(n+1\right)\)
câu hỏi là gì
câu hỏi là n = bao nhiêu