K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó:BCEF là tứ giác nội tiếp

b: Xét tứ giác AEHF có 

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiếp

25 tháng 2 2022

giúp mình câu c,d,e đi

 

25 tháng 2 2022

a, Xét tứ giác BCEF có 

^CEB = ^CFB = 900

mà 2 góc này kề, cùng nhìn cạnh BC 

Vậy tứ giác BCEF là tứ giác nt 1 đường tròn 

b, Xét tứ giác AEHF có 

^HEA = ^HFA = 900

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

c, Ta có ^AMN = ^ACN ( góc nt chắn cung AN ) 

^ANM = ^MBA ( góc nt chắn cung MA ) 

mà ^ACN = ^MBA ( tứ giác BCEF nt và 2 góc cùng nhìn cung CF ) 

=> ^AMN = ^ANM Vậy tam giác AMN cân tại A

=> AN = AM 

d, Ta có : ^CBM = ^CFE ( góc nt chắn cung CE của tứ giác BCEF ) 

mặt khác : ^CNM = ^CBM ( góc nt chắn cung CM ) 

=> ^CFE = ^CNM, mà 2 góc này ở vị trí đồng vị ) 

=> MN // EF 

e, Ta có AO là đường cao tam giác MAN 

mà MN // EF ; AO vuông MN => AO vuông EF 

25 tháng 2 2022

4 năm nửa em mới TL dc

29 tháng 10 2023

loading... a) ∆ABC vuông tại A có AH là đường cao

⇒ AH² = BH . CH

= 9 . 16

= 144

⇒ AH = 12 (cm)

BC = BH + CH

= 9 + 16

= 25 (cm)

∆ABC vuông tại A có AH là đường cao

⇒ AB² = BH . BC

= 9 . 25

= 225

⇒ AB = 15 (cm)

AC² = CH . BC

= 16 . 25

= 400

⇒ AC = 20 (cm)

b) Do F là trung điểm AB

⇒ AF = AB : 2 = 15 : 2 = 7,5 (cm)

∆ACF vuông tại A

⇒ tanAFC = AC/AF = 20/7,5 = 8,3

⇒ ∠AFC ≈ 69⁰

c) Do AE ⊥ CF (gt)

⇒ AE là đường cao của ∆ACF

∆ACF vuông tại C có CE là đường cao

⇒ AC² = CE.CF (1)

∆ABC vuông tại A có AH là đường cao

⇒ AC² = BC.CH (2)

Từ (1) và (2) suy ra:

CE.CF = BC.CH

Chọn D

5 tháng 3 2017

Dễ mà bạn :)

6 tháng 3 2017

giup mình vs

18 tháng 9 2019

TRL

=0

hok tốt

t.i.c.k nha

tks 

mk có chs free fire nek

26 tháng 8 2015

Xin lỗi em, lúc nãy thầy vẽ sai hình nên cho rằng em post sai đề. Đề hoàn toàn đúng và cách giải như sau;

Gọi N là trung điểm BC thì A,O,K,N thẳng hàng (do O là trọng tâm). Ta có NM là đường trung bình nên   \(MN\parallel AH\to MN=\frac{1}{2}CH=\frac{3}{4}CO\to\frac{NK}{KO}=\frac{3}{4}\to KO=\frac{4}{7}ON=\frac{2}{7}AO\to AK=\frac{9}{7}AO.\).

Theo định lý Pi-ta-to \(AO^2=AH^2+OH^2=\left(\frac{\sqrt{3}}{2}\right)^2+\left(\frac{\sqrt{2}}{3}\right)^2=\frac{3}{4}+\frac{2}{9}=\frac{35}{36}\to AO=\frac{\sqrt{35}}{6}\to AK=\frac{3\sqrt{35}}{14}\)   (1)

Mặt khác \(\frac{KM}{KC}=\frac{MN}{CO}=\frac{3}{4}\to KM=\frac{3}{7}CM.\)\(CM^2=CH^2+HM^2=2+\left(\frac{\sqrt{3}}{4}\right)^2=2+\frac{3}{16}=\frac{35}{16}\to CM=\frac{\sqrt{35}}{4}\to KM=\frac{3\sqrt{35}}{28}\)    (2)

Từ (1),(2) trên suy ra  \(\frac{KM}{AK}=\frac{1}{2}=\frac{HM}{HB}=\frac{HM}{HA}\to\) \(KH\) là phân giác của góc \(AKM.\)

 


 

25 tháng 1 2021

I là trung điểm BC nha

 

29 tháng 7 2020

2 + 2 chắc chắn sẽ bằng 5