Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.=x\)
\(b.=y^3\)
\(c.=3xy\)
\(d.=-\frac{5}{2}a\)
\(e.=3yz\)
\(f.=-3xy\)
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Xét x= 1 => , từ đó có y=2∨y=3
Xét y=1 => , từ đó có x=2∨x=3
Xét x≥2 hoặc y≥2 . Ta có : (x,xy−1)=1. Do đó :
xy−1|x3+x⇒xy−1|x2+1⇒xy−1|x+y
=> x+y≥xy−1⇒(x−1)(y−1)≤2. Từ đó có
=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2
Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)
Ko đc bạn ạ theo trường mik thì tổng kết tất cả là 8.0 và ko có môn nào dưới 6.5 thì mới đc hsg giỏi cùng vời hành kiểm khá trở lên và đạt tất cả các môn phụ
17576 và 19683
Bài này có trong tạp chí Toán Tuổi Thơ
Bài này của lớp 6
khảo đấy nha bạn
https://olm.vn/hoi-dap/detail/57218362971.html
hơi khác 1 tí vì bài bạn 4 chữ số o khác nhau
123456789123456789x12345=1.524074062x\(^{10^{21}}\)
hok tốt
chương ơi , mk nói làm ra tất cả các sô cơ mà