K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2

Số lượng số hạng là:

\(\left(2023-1\right):1+1=2023\) (số hạng) 

Tổng của dãy số là:

\(\left(2023+1\right)\cdot2023:2=2047276\)

Đáp số: ... 

12 tháng 2

Khỏng cách của hai số liên tiếp nhau cách nhau:

\(2-1=1\)

Số số hạng của dãy số (hay phép tính) trên là:

Công thức: (Số cuối - Số đầu) : Khoảng cách + 1.

Ta có: \(\left(2023-1\right):1+1=2023\left(số\right)\)

Tổng của dãy số (hay phép tính) trên là:

Công thức: (Số cuối + Số đầu) x Số số hạng : 2

Ta có: \(\left(2023+1\right)\times2023:2=2047276\)

Vậy \(1+2+3+4+...+2021+2022+2023=2047276\).

3 tháng 8 2023

1+2+3+...+2023=\(\dfrac{\left(2023-1\right)+1\cdot\left(1+2023\right)}{2}\)=2047276.

3 tháng 8 2023

Khoảng cách 2 số hạng kề nhau:

3-2=1

Số lượng số hạng của dãy:

(2023-1):1+1=2023

Tổng dãy số trên:

(2023 +1): 2 x 2023= 2047276

Đ.số: 2047276

23 tháng 8 2021

Nhỏ hơn

Ta có 2020/2021 <1

         2021/2022 <1

         2022/2023 <1

         2023/2024 <1

Suy ra A=(2021/2021+2021/2022 +2022/2023 +2023/2024) < (1+1+1+1)= 4

      Vậy A <4

Chúc bạn học tốt

\(\dfrac{2020}{2021}< 1\)

\(\dfrac{2021}{2022}< 1\)

\(\dfrac{2021}{2022}< 1\)

\(\dfrac{2023}{2024}< 1\)

Do đó: A<4

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:

$S=1-3+3^2-3^3+...-3^{2021}+3^{2022}$

$3S=3-3^2+3^3-3^4+...-3^{2022}+3^{2023}$

$\Rightarrow S+3S=3^{2023}-1$

$\Rightarrow 4S=3^{2023}-1$

$\Rightarrow 4S-3^{2023}=-1$

 

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Lời giải:
\(\frac{2022\times 2023-3}{2023\times 2021+2020}=\frac{2023\times (2021+1)-3}{2023\times 2021+2020} \\ =\frac{2023\times 2021+2023-3}{2023\times 2021+2020}=\frac{2023\times 2021+2020}{2023\times 2021+2020}=1\)

13 tháng 7 2023

loading...

=(2024-2023)+(2022-2021)+...+(2-1)

=1+1+...+1

=1012

29 tháng 8 2023


Không cần tính, ta thấy : 2022/2021 > 2021/2022
Vậy : 2022/2021*2023 > 2021/2022*2022

8 tháng 8 2020

yynbjkgyg

8 tháng 8 2020

x= 2002/3000

ko bt đúng ko mong bn nhắc nhở

31 tháng 1 2022

Ta có:

\(A=\frac{2021^{2021}+1}{2021^{2022}+1}\Leftrightarrow10A=\frac{2021^{2022}+10}{2021^{2022}+1}=1+\frac{9}{2021^{2022}+1}\)

\(B=\frac{2021^{2022}-1}{2021^{2023}-1}\Leftrightarrow10B=\frac{2021^{2023}-10}{2021^{2023}-1}=1-\frac{9}{2021^{2023}-1}\)

Hay ta đang so sánh: \(\frac{9}{2021^{2022}};\frac{9}{2021^{2023}}\)

Mà \(\frac{9}{2021^{2022}}>\frac{9}{2021^{2023}}\)nên \(\frac{2021^{2021}+1}{2021^{2022}+1}>\frac{2021^{2022}-1}{2021^{2023}-1}\)hay\(A>B\)

Vậy \(A>B\)

31 tháng 1 2022

Cảm ơn bạn Nguyễn Đăng Nhân nha !!!

29 tháng 5 2022

  2017/2020<2019/2020<  1
   1< 2022/2021< 2023/2021
vậy phân số lớn nhất là 2023/2021

29 tháng 5 2022

ta so sánh với 1:

 2017/2020<2019/2020<  1
   1< 2022/2021< 2023/2021
nên phân số lớn nhất là phân số cuối: 2023/2021