Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(2\times A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2\times A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)
\(A=1-\frac{1}{128}\)
\(A=\frac{127}{128}\)
\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(2\times B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)
\(B=1-\frac{1}{16}=\frac{15}{16}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4\times x+\frac{15}{16}=1\)
\(\Leftrightarrow4\times x=\frac{1}{16}\)
\(\Leftrightarrow x=\frac{1}{64}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(=\frac{16}{32}+\frac{8}{32}+\frac{4}{32}+\frac{2}{32}+\frac{1}{32}\)
\(=\frac{31}{32}\)
Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32
2A = 2/2 + 2/4 + 2/8 + 2/16 + 2/32 = 1 + 1/2 + 1/4 + 1/8 + 1/16
2A - A = 1 + 1/2 + 1/4 + 1/8 + 1/16 - 1/2 - 1/4 - ... - 1/32
A = \(1-\frac{1}{32}=\frac{31}{32}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(\Rightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(\Rightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)
\(\Leftrightarrow\)\(A=1-\frac{1}{32}=\frac{31}{32}\)
Đặt \(K=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(\Rightarrow2K=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(\Rightarrow2K-K\)
\(=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}\)
\(=1-\frac{1}{32}=\frac{31}{32}\)
Vậy \(K=\frac{31}{32}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(=\frac{16}{32}+\frac{8}{32}+\frac{4}{32}+\frac{2}{32}+\frac{1}{32}\)
\(=\frac{3}{4}+\frac{4}{32}+\frac{2}{32}+\frac{1}{32}\)
\(=\frac{7}{8}+\frac{2}{32}+\frac{1}{32}\)
\(=\frac{15}{16}+\frac{1}{32}\)
\(=\frac{31}{32}\).
K cho mk nha !
Đặt A = 1/2+1/4+1/8+1/16+1/32 (1 )
Nhân cả hai vế với 2, ta có :
A x 2 = ( 1/2+1/4+1/8+1/16+1/32 ) x 2
A x 2 = 1 + 1/2 + 1/4 + 1/8 + 1/16 ( 2 )
Lấy (2) - (1), ta có :
A x 2 - A = ( 1 + 1/2 + 1/4 + 1/8 + 1/16 ) - ( 1/2+1/4+1/8+1/16+1/32 )
A x 1 = 1 + 1/2 + 1/4 + 1/8 + 1/16 - 1/2 - 1/4 - 1/8 - 1/16 - 1/32
A = 1 + 1/2 - 1/2 + 1/4 - 1/4 + 1/8 - 1/8 + 1/16 - 1/16 - 1/32
A = 1 - 1/32
A = 31/32
Ủng hộ mị nhé
Đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
2A = \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
2A - A = \(1-\frac{1}{32}\)
=> A = \(\frac{31}{32}\)