K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 5 2020

Lời giải:

\(A=2(9^{2009}+9^{2008}+....+9+1)\)

\(9A=2(9^{2010}+9^{2009}+...+9^2+9)\)

Trừ theo vế:
\(8A=2(9^{2010}-1)\Rightarrow A=\frac{9^{2010}-1}{4}=\frac{(9^{1005}-1)(9^{1005}+1)}{4}\)

\(=\frac{9^{1005}-1}{2}.\frac{9^{1005}+1}{2}\)

Thấy rằng \(9^{1005}-1\vdots 9-1\vdots 2\Rightarrow \frac{9^{1005}-1}{2}\in\mathbb{N}\); \(9^{1005}+1\vdots 9+1\vdots 2\Rightarrow \frac{9^{1005}+1}{2}\in\mathbb{N}\)

\(\frac{9^{1005}+1}{2}-\frac{9^{1005}-1}{2}=1\) nên đây là 2 số tự nhiên liên tiếp.

Do đó $A$ là tích của 2 số tự nhiên liên tiếp (đpcm)

15 tháng 9 2023

Ta có :

\(Q=\dfrac{x+1}{x-\sqrt[]{x}+1}\left(x\inℕ\right)\)

\(\Leftrightarrow Q=\dfrac{\left(x+1\right)\left(\sqrt[3]{x}+1\right)}{\left(\sqrt[3]{x}+1\right)\left(x-\sqrt[]{x}+1\right)}\)

\(\Leftrightarrow Q=\dfrac{\left(x+1\right)\left(\sqrt[3]{x}+1\right)}{\left(x+1\right)}\)

\(\Leftrightarrow Q=\sqrt[3]{x}+1\)

Để \(Q\inℕ\)

\(\Leftrightarrow\sqrt[3]{x}+1\inℕ\)

\(\Leftrightarrow\sqrt[3]{x}\inℕ\)

\(\Leftrightarrow x=\left\{x\inℕ|x=k^3;k\inℕ\right\}\)

2 tháng 11 2016

Đặt \(2377-9y^2-6y=x^2\Leftrightarrow\left(3y+1\right)^2=2378-x^2\)

\(\Rightarrow\left(3y+1\right)^2\le2378< 2401=49^2\)

Từ đó suy ra được \(-49\le3y+1\le49\Leftrightarrow-16\le y\le16\)

Vậy y thuộc khoảng trên. Bạn tự liệt kê ra nhé ^^

NV
27 tháng 11 2018

\(\Delta'=\left(n^2-1\right)^2+\left(6n^3+13n^2+6n-1\right)=\left(n+1\right)\left(n^3-n^2-n+1\right)+\left(n+1\right)\left(6n^2+7n-1\right)\)

\(\Rightarrow\Delta'=\left(n+1\right)\left(n^3+5n^2+6n\right)=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Phương trình có nghiệm hữu tỉ khi và chỉ khi \(\Delta'\) là số chính phương

\(\Delta'=n\left(n+3\right)\left(n+1\right)\left(n+2\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt \(n^2+3n=a\ge4\Rightarrow\Delta'=a\left(a+2\right)=a^2+2a\)

Ta có \(a^2+2a>a^2\) do \(2a>0\)

\(a^2+2a=\left(a+1\right)^2-1< \left(a+1\right)^2\)

\(\Rightarrow a^2< \Delta'=a^2+2a< \left(a+1\right)^2\)

\(\Rightarrow\Delta'\) nằm giữa hai số chính phương liên tiếp nên \(\Delta'\) không thể là số chính phương

\(\Rightarrow\) phương trình không có nghiệm hữu tỉ với mọi \(n>0\)

15 tháng 3 2018

ap dung bunhiacopki

\(\left(x^4+1\right)\left(y^4+1\right)>=\left(x^2+y^2\right)^2>=\left[\frac{\left(x+y\right)^2}{2}\right]^2=4\)

do do P>=4+2013=2017

= xảy ra <=>x=y=1