Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
N=x^5/120+x^4/12+7x^3/24+5x^2/12+x/5
N = ( x^5 + 10x^4 + 35x^3 + 50x^2 + 24x)/120
N = x( x^4 + 10x^3 + 35x^2 + 50x + 24)/120
N = x( x^4 + x^3 + 9x^3 + 9x^2 + 26x^2 + 26x + 24x + 24)/120
N = x(x +1)(x^3 + 9x^2 + 26x + 24)/120
N = x(x +1)(x^3+ 2x^2 + 7x^2 + 14x + 12x + 24)/120
N = x(x+1)(x+2)(x^2 + 7x + 12)/120
N = x(x +1)(x+2)(x+3)(x+4)/120
N có tử số là tích của 5 số tự nhiên liên tiếp
-> N chia hết cho 5, 3
trong 5 số tự nhiên liên tiếp có một số chia hết cho 4 và một số chia hết cho 2
-> N chia hết cho 4x2 = 8
Vậy N chia hết cho 3x5x8 = 120
Vậy N luôn là số tự nhiên với mọi số tự nhiên x
Ben xem thế này có đúng ko nha
P = x^5/120 + x^4/12 + 7x³/24 + 5x²/12 + x/5
= x(x^4/120 + x³/12 + 7x²/24 + 5x/12 + 1/5)
= x(x^4 + 10x³ + 35x² + 50x + 24)/120
Xét: x(x^4 + 10x³ + 35x² + 50x + 24)
= x(x + 1)(x + 2)(x + 3)(x + 4)
--
Trước hết ta chứng minh x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
* Nếu x chia hết cho 2 => x + 2 và x + 4 cũng chia hết cho 2
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
* Nếu x lẻ => x = 2k + 1
=> x + 1 = 2k + 2 và x + 3 = 2k + 4
Dễ dàng chứng minh một trong hai số x + 1 và x + 3 có một số chia hết cho 2 và một số chia hết cho 4
Thật vậy:
► Nếu k lẻ thì
x + 1 = 2k + 2 = 2(2m + 1) + 2 = 4m + 4 chia hết cho 4
x + 3 = 2k + 4 = 2(2m + 1) + 4 = 4m + 6 chia hết cho 2
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
► Nếu n chẵn thì:
x + 1 = 2k + 2 = 4m + 2 chia hết cho 2
x + 3 = 2k + 4 = 4m + 4 chia hết cho 4
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
Tóm lại ta có
x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8 với mọi x là số tự nhiên (1)
---
Mặt khác x(x + 1)(x + 2)(x + 3)(x + 4) là tích 5 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3 và một số chia hết cho 5
=> x(x + 1)(x + 2)(x + 3)(x + 4) vừa chia hết cho 3 vừa chia hết cho 5 với mọi x là số tự nhiên (2)
----
Từ (1) và (2) cho ta
x(x + 1)(x + 2)(x + 3)(x + 4) vừa chia hết cho 3 vừa chia hết cho 5, vừa chia hết cho 8 với mọi x là số tự nhiên
mà (3 , 5, 8) là bộ 3 số nguyên tố cùng nhau
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho tích 3.5.8 = 120
Vậy P = x(x^4 + 10x³ + 35x² + 50x + 24)/120 là một số tự nhiên.
\(\sqrt{\left(120-11\right)^2}+\sqrt{\left(10-\sqrt{120}\right)^2}\)
\(=120-11+10+\sqrt{120}\)
\(=\sqrt{120}\left(\sqrt{120}+1\right)-1\)
\(a,=\left(120-11\right)+\left|10-\sqrt{120}\right|=109+\sqrt{120}-10=99+2\sqrt{30}\\ b,=\sqrt{\left(\sqrt{x+1}+1\right)^2-\left(\sqrt{x+1}+1\right)^2}=\sqrt{0}=0\)
ĐK: ` x \ne 10; x \ne 0`
`120/(x-10)-3/5=120/x`
`<=>120/(x-10)-120/x=3/5`
`<=>1/(x-10) - 1/x= 1/200`
`<=> (x-x+10)/(x(x-10)) = 1/200`
`<=> 10/(x(x-10))= 1/200`
`<=> x^2-10=2000`
`<=>` \(\left[{}\begin{matrix}x=50\\x=-40\end{matrix}\right.\)
Vậy `S={50;-40}`.
`120/(x-10)-3/5=120/x(x ne 0,x ne 10)`
`<=>40/(x-10)-1/5=40/x`
`<=>200x-x(x-10)=200(x-10)`
`<=>200x-200x+2000-x^2+10x=0`
`<=>x^2-10x-2000=0`
`Delta'=25+2000=2025`
`<=>x_1=50,x_2=-40`
Vậy `S={50,-40}`
\(\dfrac{120}{x}+\dfrac{120}{x-10}=\dfrac{3}{5}\left(dkxd:x>0,x\ne10\right)\)
\(\Leftrightarrow\dfrac{120}{x}+\dfrac{120}{x-10}-\dfrac{3}{5}=0\)
\(\Leftrightarrow\dfrac{120.5\left(x-10\right)+5.120x-3x\left(x-10\right)}{5x\left(x-10\right)}=0\)
\(\Leftrightarrow600x-6000+600x-3x^2+30x=0\)
\(\Leftrightarrow-3x^2+1230x-6000=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\approx405\\x\approx5\end{matrix}\right.\)\(\left(tmdk\right)\)
Vậy ...
\(\frac{120}{x}-\frac{120}{x+12}=\frac{1}{2}\)
\(\Leftrightarrow120.2\left(x+2\right)-120.2x=x\left(x+12\right)\)
\(\Leftrightarrow240x+2880-240x=x^2+12x\)
\(\Leftrightarrow240x+2880-240x-x^2-12x=0\)
\(\Leftrightarrow2880-x^2-12x=0\)
\(\Leftrightarrow x^2+12x-2880=0\)
\(\Delta'=b'^2-ac\)
\(=6^2-1\left(-2880\right)\)
\(=2916\Rightarrow\sqrt{\Delta'}=\sqrt{2916}=54>0\)
=> Phương trình có 2 nghiệm phân biệt:
\(x_1=-6+54=48\)
\(x_2=-6-54=-60\)