Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tính :
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}+\frac{109}{110}\)
\(A=\frac{1}{2}+\frac{4}{6}+\frac{1}{6}+\frac{10}{12}+\frac{1}{12}+\frac{18}{20}+\frac{1}{20}+\frac{28}{30}+\frac{1}{30}+\frac{40}{42}+\frac{1}{42}+\frac{54}{56}+\frac{1}{56}\)
\(+\frac{70}{72}+\frac{1}{72}+\frac{88}{90}+\frac{1}{90}+\frac{108}{110}+\frac{1}{110}\)
=1/1.2+5/2.3+11/3.4+19/4.5+29/5.6+41/6.7
=1-1/2+5/2-5/3+11/3-11/4+19/4-19/5+29/5-29/6+41/6-41/7
=3+2+2+2+2-41/7
=77/7-41/7
=36/7
k nhé
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)+\left(1-\frac{1}{42}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=6-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\right)\)
\(=6-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=6-\left(1-\frac{1}{7}\right)=6-\frac{6}{7}=\frac{36}{7}\)
a = 1/(1.2) + 5/(2.3) + ... + 89/(9.10)
a = [1-1/(1.2)] + [1-1/(2.3)] + ... + [1-1/(9.10)]
\(a=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+...+\left(1-\frac{1}{9.10}\right)\)
\(a=9-\left[\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right]\)
Ta có:
\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
....
\(\frac{1}{9.10}=\frac{1}{9}-\frac{1}{10}\)
Cộng các vế ở trên lại:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
Vậy:
a = 9 - 9/10 = 81/10
\(5-\frac{1}{2}-\frac{5}{6}-\frac{11}{12}-\frac{19}{20}-\frac{29}{30}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{5}{6}\right)+\left(1-\frac{11}{12}\right)+\left(1-\frac{19}{20}\right)+\left(1-\frac{29}{30}\right)\)
\(=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)