Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\) | \(\frac{101}{60}\) | \(\frac{1}{20}\) |
\(\frac{59}{60}\) | \(-\frac{1}{3}\) | \(\frac{7}{60}\) |
\(\frac{3}{4}\) | \(-\frac{7}{12}\) | \(\frac{3}{5}\) |
- Lưới ô vuông 5x5 có: 5 tổng hàng ngang, 5 tổng hàng dọc và 2 tổng chéo. Tất cả có 12 tổng
- Mỗi tổng có 5 số hạng nên lớn nhất có thể là 5x1 và bé nhất có thể là 5x(-1). Các giá trị của tổng có thể có 11 trường hợp (-5;-4;-3;-2;-1;0;1;2;3;4;5)
- Theo nguyên lý Direchiet :"có 12 tổng mà chỉ có 11 giá trị khả dĩ thì sẽ có ít nhất hai tổng có giá trị bằng nhau-ĐPCM.
vì lưới ô vuông có 5 hàng hàng ngang,5 hàng dọc và 2 tổng chéo . như vậy có 12 tổng.
bài này cũng khá khó gặm but đối với anh thì khác!
Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.
Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:\(-5\le S\le5\)
\(\Rightarrow\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.
Bài toán được chứng minh_._
Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.
Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5
⇒có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.
(ĐPCM)
Tích của mỗi hàng, cột, đường chéo là:
100.10-5.102 = 10–3
Từ đó ta điền được vào các ô trống còn lại như sau:
100 | 10-5 | 102 |
101 | 10-1 | 10-3 |
10-4 | 103 | 10-2 |