Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}+\frac{1}{100\cdot101}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1+1-\frac{1}{101}=2-\frac{1}{101}=1\frac{100}{101}=\frac{201}{101}\)
=1+1/1-1/2+1/2-1/3+1/3-1/+1/4-1/5+...+1/99-1/100+1/100-1/101
=1+1-1/101
=201/101
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
1/2!+1/3!+...+1/100!<1/1*2+1/2*3+1/3*4+...+1/99*100
1-1/100<1
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{99.100}\)
= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
= \(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2.\left(1-\frac{1}{100}\right)\)
= \(2.\frac{99}{100}\)
= \(\frac{99}{50}\)
Đặt tổng là A
Ta đi nhân 2 vế với 3
Làm đc tiếp chứ
Đây là kiến thức lớp 6 mà
3A= 1.2.3 + 2.3.4 + 3.4.3 +...+ 99.100.3
3A= 1.2.(3-0)+2.3.(4-1)+ 3.4(5-2)+....+ 99.(101-98)
3A= ( 1.2.3+.2.3.4+3.4.5+...+ 99.100.101) - ( 0.1.2+ 1.2.3+ 2.3.4+...+ 98.99.100)
3A= 99.100.101 - 0.1.2
3A= 999900
A= 999900:3
A= 333300
CHÚC BN HỌC TỐT :))))))))))))
Đặt \(A=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100\)
\(\Rightarrow3A=99.100.101\)
\(\Rightarrow A=99.100.101:3\)
\(\Rightarrow A=33.100.101\)
\(\Rightarrow A=333300\)
Đặt A=1.2+2.3+3.4+...+99.100
=>3A=3(1.2+2.3+3.4+...+99.100)
=>3A=1.2.3+2.3.3+3.4.3+...+99.100.3
=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...+(98.99.100-98.99.100)+99.100.101
3A=0+0+...+0+99.100.101
3A=99.100.101
A=99.100.101:3
A=333300
Vậy A=333300
\(P=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)
\(P=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)
\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)
Cho:A=1/1x2+1/3x4+....+1/99x100
CMR:7/12<A<5/6
Ta có:
A= 1/1x2 +1/3x4 +1/5x6 +...+ 1/99x100
A= 1-1/2 + 1/3 - 1/4 + 1/5 -1/6 +...+ 1/99-1/100
A= 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 +...+1/99 + 1/100 - 2.1/2 - 2.1/4 - ... - 2.1/98
A= 1 + ... + 1/100 - 1 - 1/2 - 1/3 - ... - 1/49
A= 1/51 + ... + 1/100
=> A < 1/51.25 = 25/51 < 25/30 = 5/6 => đpcm
Và : A > 25x1/75 + 25x1/100 = 7/12
Ta có:
A= 1/1x2 +1/3x4 +1/5x6 +...+ 1/99x100
A= 1-1/2 + 1/3 - 1/4 + 1/5 -1/6 +...+ 1/99-1/100
A= 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 +...+1/99 + 1/100 - 2.1/2 - 2.1/4 - ... - 2.1/98
A= 1 + ... + 1/100 - 1 - 1/2 - 1/3 - ... - 1/49
A= 1/51 + ... + 1/100
=> A < 1/51.25 = 25/51 < 25/30 = 5/6 => đpcm
Và : A > 25x1/75 + 25x1/100 = 7/12
1/ 1x 2 - 1/ 2 x 3 - ..... - 1/99 x 100
= 1 - 1/2 + 1/2 - 1/3 +.......+ 1/ 99 - 1/100
= 1 - 1/ 100
= 99/100
Hok tốt