Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
\(=3x^2+3y^2-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3x^2+3y^2-2\left(x^2-xy+y^2\right)\)
\(=3x^2+3y^2-2x^2+2xy-2y^2\)
\(=x^2+2xy+y^2=\left(x+y\right)^2=2^2=4\)
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
Với x = 0 thì \(y=\pm1\)
Xét \(x\ne0\). Từ phương trình, ta có: \(4y^2=\left(2x^2+x\right)^2+3x^2+4x+4>\left(2x^2+x\right)^2\)
Hơn nữa: \(4y^2=\left(2x^2+x+2\right)^2-5x^2< \left(2x^2+x+2\right)^2\)
Suy ra: \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)
Do đó, ta có: \(4y^2=\left(2x^2+x+1\right)^2\) hay \(3\left(1+x+x^2+x^3+x^4\right)=\left(2x^2+x+1\right)^2\)
giải phương trình này, ta được: x = -1 haowcj x = 3
Từ đó => Nghiệm của phương trình là: (0;1);(0;-1);(-1;1);(-1;-1);(3;11);(3;-11)
a)\(x^4-3x^2+9=\left(x^2\right)^2+6x^2+9-9x^2=\left(x^2+3\right)^2-\left(3x\right)^2\)
\(=\left(x^2-3x+3\right)\left(x^2+3x+3\right)\)
b)\(x^4+3x^2+4=\left(x^2\right)^2+2\times x^2\times2+4-x^2=\left(x^2+2\right)^2-x^2\)
\(\left(x^2-x+2\right)\left(x^2+x+2\right)\)
c)Chờ tui tí
\(2x-1-x^2=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\\ \left(1-3\right)^3-1=\left(-2\right)^3-1=-2-1=-3\\ \left(4x-1\right)^2-9x^2=\left(4x-1-3x\right)\left(4x-1+3x\right)=\left(x-1\right)\left(7x-1\right)\\ \left(x+2\right)^3+1=\left(x+2+1\right)\left[\left(x+2\right)^2+\left(x+2\right)+1\right]\\ =\left(x+3\right)\left(x^2+4x+4+x+2+1\right)\\ =\left(x+3\right)\left(x^2+5x+7\right)\)
1 + 1 = a + b
Thỏa mãn điều kiện a = b và a hoặc b < 2
a + b => 1 + 1 = 2