\(\frac{x}{x^2+5x+6}=\frac{2}{x^2+3x+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x+2}{x^2+5x+6+x^2+3x+2}\)

=\(\frac{x+2}{x^2+x^2+5x+3x+6+2}\)

=\(\frac{x+2}{2x^2+8x+8}=\frac{x+2}{2\left(x^2+4x\right)+8}\)

=\(\frac{x+2}{2x\left(x+2\right)+8}\)=\(\frac{x+2}{2x\left(x+2\right)+8}\)

\(\Rightarrow\)2x + 8 =2(x + 4)

20 tháng 1 2020

a) \(\left(x^2+2x+2\right)=\left(x+1\right)^2+1>0;\left(x^2+x+2\right)=\left(x+\frac{1}{2}^2\right)+\frac{3}{4}>0\)

Đặt \(y=\frac{x^2+2x+2}{x^2+x+2}=1+\frac{x}{x^2+x+1}\Rightarrow\frac{2x}{x^2+x+2}=2\left(y-1\right)\)

\(\Rightarrow\frac{1}{y}=\frac{x^2+x+2}{x^2+2x+2}=1-\frac{x}{x^2+2x+2}\Rightarrow\frac{x}{x^2+2x+2}=1-\frac{1}{y}\)

Thay vào ta có PT theo ẩn \(y:\) \(\left(1-\frac{1}{y}\right)+2\left(y-1\right)=\frac{7}{10}\)

\(\Leftrightarrow20y^2-17y-10=0\)

\(\Leftrightarrow\left(5y+2\right)\left(4y-5\right)=0\)

\(\Leftrightarrow4y-5=0\left(Vì:y>0\right)\)

\(\Leftrightarrow\frac{x^2+2x+2}{x^2+x+2}=\frac{5}{4}\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow x=1;x=2\)

Vậy ...................................

22 tháng 4 2020

Bài làm

a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)

\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)

\(\Leftrightarrow6x+4=0\)

\(\Leftrightarrow x=-\frac{4}{6}\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy x = -2/3 là nghiệm.

23 tháng 4 2020

@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4

Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)

6 tháng 2 2020

\(\frac{3x-1}{2}-\frac{2-6x}{5}=\frac{1}{2}+\left(3x-1\right)\)

\(\Leftrightarrow\frac{3x-1}{2}+\frac{2\left(3x-1\right)}{5}-\left(3x-1\right)=\frac{1}{2}\)

\(\Leftrightarrow\left(3x-1\right)\left(\frac{1}{2}+\frac{2}{5}-1\right)=\frac{1}{2}\)

\(\Leftrightarrow\frac{-1}{10}\left(3x-1\right)=\frac{1}{2}\)

\(\Leftrightarrow3x-1=-5\)

\(\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)

Vậy nghiệm duy nhất của phương trình là\(x=\frac{-4}{3}\)

\(\left(x^2+2x+1\right)-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5x-5}{6}\)

\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5\left(x+1\right)}{6}\)

\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+6-5\right)}{6}\)

\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+1\right)}{6}\)

\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}-\frac{\left(x+1\right)\left(6x+1\right)}{6}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1-\frac{1}{3}-\frac{6x+1}{6}\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+1\right)=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy nghiệm duy nhất của phương trình là\(x=-1\)

18 tháng 4 2017

\(1.\frac{7x-3}{x-1}=\frac{2}{3}\)   ( \(x\ne1\))

\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)

\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\frac{7}{19}\)

\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)

\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)

\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)

\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)

\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)

\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)

\(\Leftrightarrow3x=-15\)

\(\Leftrightarrow x=-5\)

\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)

\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)

\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)

\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)

\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)

\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)

\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)

\(\Leftrightarrow4x^2+5x-7=0\)

\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)

\(\left(2x+\frac{5}{4}\right)^2>0\)

\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)

=> PT vô nghiệm 

\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)

\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)

\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)

\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)

\(\Leftrightarrow-23x-7=0\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=\frac{-7}{23}\)

\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)

\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)

\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)

\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)

\(\Leftrightarrow-6x+16=0\)

\(\Leftrightarrow-6x=-16\)

\(\Leftrightarrow x=\frac{16}{6}\)

\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)

\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)

\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)

\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)

\(\Leftrightarrow x^4+x^3-4x-8=0\)

\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)

Đến đấy mk tắc r xl bạn nhé 

18 tháng 2 2017

đề sai òi                                              

21 tháng 5 2016

 a)      10-4x=2x-2

      <=>- 4x-2x = - 10 - 2

       <=>  -6x   = - 12

       <=>   x= 2 

Vậy PT có tập nghiệm x={ 12 }

b)    \(\frac{5x-2}{3}\) = \(\frac{5-3x}{2}\)

<=> \(\frac{2\left(5x-2\right)}{6}\) = \(\frac{3\left(5-3x\right)}{6}\)

<=> \(\frac{10x-4}{6}\) = \(\frac{15-9x}{6}\)

=> 10x-4=15-9x

<=>10x+9x=4+15

<=>19x   = 19

<=>   x =1

Vậy PT có tập nghiệm x={1}

 

23 tháng 5 2016

c) 3x - 15 = 2x (x - 5)

= 3.(x-5)=2x(x-5)

Nếu x-5=0 => x=5 .Thỏa mãn 3.0=3.5.0.

Nếu x-5 khác 0 => 3=2x => x=3/2

Vậy PT có tập nghiệm là : x thuộc {0;3/2}

d)  \(\frac{x^2-6}{x}=x+\frac{3}{2}=>\frac{x^2}{x}-\frac{6}{x}=x+\frac{3}{2}=>x-\frac{6}{x}=x+\frac{3}{2}\)

\(=>-\frac{6}{x}=\frac{3}{2}=>x=-4\)

Vây PT có tập nghiệm: x thuộc {-4}

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x