Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{y\left(y+2\right)}=\frac{50}{101}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{y\left(y+2\right)}=\frac{50}{101}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{y}-\frac{1}{y+2}=\frac{50}{101}\)
\(1-\frac{1}{y+2}=\frac{50}{101}\)
\(\Leftrightarrow\frac{1}{y+2}=\frac{51}{101}\)
\(\Leftrightarrow y+2=\frac{101}{51}\)
\(\Leftrightarrow x=-\frac{1}{51}\)
Đề sai rồi em, mẫu số đều là số lẻ thì 120 ko theo quy luật
\(A=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{899}\\ 2A=2\cdot\dfrac{1}{3}+2\cdot\dfrac{1}{15}+2\cdot\dfrac{1}{35}+2\cdot\dfrac{1}{63}+...+2\cdot\dfrac{1}{899}\\ 2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{29}-\dfrac{1}{31}\\ 2A=1-\dfrac{1}{31}\\ 2A=\dfrac{30}{31}\\ A=\dfrac{30}{31}\div2\\ A=\dfrac{30}{31\cdot2}=\dfrac{15}{31}\)
:))
Đặt phép tính cần tìm là A
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(2A=1-\dfrac{1}{13}\)
\(2A=\dfrac{12}{13}\)
\(A=\dfrac{6}{13}\)
\(A=\dfrac{1}{3}+\dfrac{1}{15}+...+\dfrac{1}{143}\\ =\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{11\times13}\\ =\dfrac{1}{2}\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{11\times13}\right)\\ =\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)\\ =\dfrac{1}{2}\times\dfrac{12}{13}\\ =\dfrac{6}{13}\)
\(\Leftrightarrow\dfrac{4}{9}:x=\dfrac{8}{3}\)
hay \(x=\dfrac{4}{9}\cdot\dfrac{3}{8}=\dfrac{1}{2}\cdot\dfrac{1}{3}=\dfrac{1}{6}\)
\(C=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{1023}\)
\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}....+\frac{1}{31\cdot33}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{31}-\frac{1}{33}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{33}\right)\)
\(=\frac{1}{2}\cdot\frac{32}{33}\)
\(=\frac{32}{66}=\frac{16}{33}\)
Vậy \(A=\frac{16}{33}\)
HOK TỐT .
\(C=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{1023}\)
\(C=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{31\cdot33}\)
\(C=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{31\cdot33}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{31}-\frac{1}{33}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{33}\right)\)
\(C=\frac{1}{2}\cdot\frac{32}{33}\)
\(C=\frac{16}{33}\)
1/3+1/15+1/35+1/63+1/99+……+1/9999
=1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+1/(9×11)+……+1/(99×101)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+……+1/2(1/99-1/101)
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+……+1/99-1/101)
=1/2(1-1/101)
=1/2×(100/101)
=50/101
1/3+1/15+1/35+1/63+1/99+……+1/9999
=1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+1/(9×11)+……+1/(99×101)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+……+1/2(1/99-1/101)
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+……+1/99-1/101)
=1/2(1-1/101)
=1/2×(100/101)
=50/101
1/1x3 + 1/3x5 + 1/5x7 + 1/7x9 +... + 1/23x25 + 1/25x27 =
1/2 x (2/1x3 + 2/3x5 + 2/5x7 +..... 2/23x25 +2/25x27 =
1/2 x (1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 +...... + 1/23 - 1/25 + 1/25 - 1/27 =
1/2 x (1 - 1/27) =
1/2 x 26/27 = 13/27
câu 1:
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(\hept{\begin{cases}15=3\cdot5\\35=5\cdot7\end{cases}}\\ \hept{\begin{cases}3=3\\63=3^2\cdot7\\99=3^2\cdot11\end{cases}}\)
=>\(\frac{2310}{3465}+\frac{462}{3465}+\frac{198}{3465}+\frac{110}{3465}+\frac{70}{3465}\)
=>\(\frac{2310+462+198+110+70}{3465}\)
=>\(\frac{3150}{3465}\)=\(\frac{10}{11}\)
(1/15+1/35+1/63)*y+3/4=1
= 1/9 x Y + 3/4 = 1
= 1/9 x Y = 1-3/4
= 1/9 x Y = 1/4
= Y = 1/4 : 1/9
= Y = 9/4