K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt:\(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{n.\left(n+1\right)}\)

\(\frac{1}{2}.A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{n.\left(n+1\right)}\)

\(\frac{1}{2}.A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{n.\left(n+1\right)}\)

\(\frac{1}{2}.A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{n}-\frac{1}{n+1}\)

\(\frac{1}{2}.A=1-\frac{1}{n+1}\)

\(A=\frac{n}{n+1}.2\)

\(A=\frac{2n}{n+1}\)

đấy là bài giải đầy đủ rồi nhé bạn

30 tháng 4 2016

n-2 chia het cho n+3 

nen n+3-5 chia het cho n+3

5 chia het cho n+3

n+3 =cong tru1 cong tru 5

roi tim n

29 tháng 3 2018

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}......\frac{99.101}{100.100}\)

\(=\frac{1.2.3...99}{2.3.4....100}.\frac{3.4.5....101}{2.3.4....100}\)

\(=\frac{1}{100}.\frac{101}{2}\)

\(=\frac{101}{200}\)

22 tháng 3 2018
  1.  (1/2-1/3-1/6).(3/8+34/88-345/888)​​​

= (3/6-2/6-1/6).(3/8+34/88-345/888)

= 0.(3/8+434/88-345/888)=0

      2.  8/3.2/5.3/8.10.19/92

= (8/3.3/8).(2/5.10).19/92

= 1.4.19/92

= 76/92

22 tháng 3 2018

1) \(\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\left(\frac{3}{8}+\frac{34}{88}+\frac{345}{888}\right)=\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\left(\frac{3}{8}+\frac{34}{88}+\frac{345}{888}\right)\)

                                                                                   \(=\left(\frac{1}{6}-\frac{1}{6}\right)\left(\frac{3}{8}+\frac{34}{88}+\frac{345}{888}\right)\)

                                                                                   \(=0\cdot\left(\frac{3}{8}+\frac{34}{88}+\frac{345}{888}\right)=0\)(số nào nhân với 0 cũng bằng 0)

2) \(\frac{8}{3}\cdot\frac{2}{5}\cdot\frac{3}{8}\cdot10\cdot\frac{19}{92}=\frac{8\cdot2\cdot3\cdot10\cdot19}{3\cdot5\cdot8\cdot92}\)

\(=\frac{2\cdot10\cdot19}{5\cdot92}=\frac{2\cdot2\cdot5\cdot19}{5\cdot2\cdot2\cdot23}=\frac{19}{23}\)

29 tháng 8 2016

Đặt A = 1x2+2x3+3x4+...+nx(n+1)

=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + n.(n + 1).[(n + 2).(n - 1)]

=> 3A =  1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + n.(n + 1).(n + 2)

=> 3A = n.(n + 1).(n + 2)

=> A = n.(n + 1).(n + 2) / 3

5 tháng 6 2017

Cách làm mk làm giống  Edokawa Conan nhé kw ;\(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

\(a;\frac{1}{n}-\frac{1}{n-1}=\frac{n-1-n}{n\left(n-1\right)}=-\frac{1}{n\left(n-1\right)}\)

10 tháng 8 2019

a)  \(\frac{1}{n}-\frac{1}{n-1}=\frac{n-1-n}{n\left(n-1\right)}=-\frac{1}{n\left(n-1\right)}\)

b)  \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)(cái này là 1 tính chất nha bn ! tìm hiểu thêm nhé )

c)đặt   C= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

        => 2C = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)

=>   C=5/39

d) Ý d) lm tương tự ý c nha 

e)  đặt E =\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)

   =>   2E=\(1+\frac{1}{2}+...+\frac{1}{2^{99}}\)

lấy 2E-E =\(1+\frac{1}{2}+...+\frac{1}{2^{99}}-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{100}}=1-\frac{1}{2^{100}}\)

=.> E=1 - \(\frac{1}{2^{100}}\) 

19 tháng 4 2017

bai 3

\(A=\frac{10^{2004}+1}{10^{2005}+1}\)

\(10A=\frac{10^{2004}+10}{10^{2005}+1}\)

\(10A=1\frac{9}{10^{2005}+1}\)

\(B=\frac{10^{2005}+1}{10^{2006}+1}\)

\(10B=\frac{10^{2005}+10}{10^{2006}+1}\)

\(10B=1\frac{9}{10^{2006}+1}\)

 Vì \(1\frac{9}{10^{2005}+1}>1\frac{9}{10^{2006}+1}\)

\(\Rightarrow10A>10B\)

\(\Rightarrow A>B\)

19 tháng 4 2017

bai 4

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\)

\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+....+\frac{1}{3^9}\)

\(A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^9}\)

5 tháng 6 2017

Đặt A = 1 x 2 + 2 x 3 + 3 x 4 + ... + n x ( n - 1)
=> 3A = 1 x 2 x (3 - 0) + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + ... + n x (n - 1) x [(n + 2) x (n + 1)]
=> 3A = 1 x 2 x 3 - 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 4 + ... + n x (n + 1) x (n + 2)
=> 3A = n x (n + 1) x (n + 2)
=> A = n x (n + 1) x (n + 2) / 3

5 tháng 6 2017

3S=1.2.3+3.4.5+...+n.(n-1).3

1.2.(3-0).......................................................

 k mk đi mk giải tiếp cho nha

23 tháng 2 2020

a)

A= (-m+n-p)-(-m-n-p)

A= -m+n-p+m+n+p

A= (-m+m) +(n+n) + (-p+p)

A= 0+2n+0

A = 2n

23 tháng 2 2020

Bài 1: 

A = (-m + n - p) - (-m - n - p)

A = -m + n - p + m + n + p

A = (-m + m) + (n + n) - (p - p)

A = 2n

Với n = -1 => A = 2(-1) = -2

Bài 2: 

A = (-2a + 3b - 4c) - (-2a -3b - 4c)

A = -2a + 3b - 4c + 2a + 3b + 4c

A = (-2a + 2a) + (3b + 3b) - (4c - 4c)

A = 6b

Với b = -1 => A = 6(-1) = -6

Bài 3:

a) A = (a + b) - (a - b) + (a - c) - (a + c)

A= a + b - a + b + a - c - a - c

A = (a - a + a - a) + (b + b) - (c + c)

A = 2(b - c)

b) B = (a + b - c) + (a - b + c) - (b + c - a) - (a - b - c)

B = a + b - c + a - b + c - b - c + a - a + b + c

B = (a + a + a - a) + (b - b - b + b) - (c - c + c - c)

B = 2a