Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)=2023x\)
\(\Rightarrow2022x+\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}+\dfrac{1}{2022}-\dfrac{1}{2023}\right)=2023x\)\(\Rightarrow2022x-2023x=-\left(1-\dfrac{1}{2023}\right)\)
\(\Rightarrow-x=-\dfrac{2022}{2023}\Leftrightarrow x=\dfrac{2022}{2023}\)
(x + 1/1.2) + (x + 1/2.3) + (x + 1/3.4) + ... + (x + 1/2022.2023) = 2023x
x + x + x + ... + x + 1/1.2 + 1/2.3 + ... + 1/2022.2023 = 2023x
2022x + 1 - 1/2 + 1/2 - 1/3 + ... + 1/2022 - 2023 = 2023x
2023x - 2022x = 1 - 1/2023
x = 2022/2023
8 ngày
giúp tớ nhé ,tớ mới bị từ 290
ai giúp mình mình giúp lại
cảm ơn trước ( huhu)
Do mỗi số hạng ở vế trái nằm trong dấu giá trị tuyệt đối mà vế phải 100 là số dương nên x cũng phải dương.
Do x dương và trong mỗi dấu giá trị tuyệt đối đều dương nên ta lập được kết quả sau:
x+1/1.2+x+1/2.3+1/3.4+....+x+1/99.100=100x
Dãy trên có 99 số x nên:
99x+(1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100)=100x
1-1/100=x
x=99/100
Vậy x=99/100
Chúc em học tốt^^
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x.\left(x+1\right)}=\frac{2014}{2015}\)
\((1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1})=\frac{2014}{2015}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2014}{2015}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)
\(\Rightarrow x+1=2015\)
\(\Leftrightarrow x=2014\)
Vậy x=2014
Lời giải:
$x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}+\frac{1}{100}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}+\frac{1}{100}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}$
$=1$
`# \text {DNamNgV}`
\(x-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}-...-\dfrac{1}{98\cdot99}=\dfrac{1}{100}+\dfrac{1}{99\cdot100}\)
\(\Rightarrow x-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}\right)=\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow x-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)=\dfrac{1}{99}\)
\(\Rightarrow x-\left(1-\dfrac{1}{99}\right)=\dfrac{1}{99}\)
\(\Rightarrow x-\dfrac{98}{99}=\dfrac{1}{99}\)
\(\Rightarrow x=\dfrac{1}{99}+\dfrac{98}{99}\)
\(\Rightarrow x=\dfrac{99}{99}\)
\(\Rightarrow x=1\)
Vậy, `x = 1.`
1/1.2 + 1/2.3 + ... + 1/x(x + 1)
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/x - 1/x + 1
= 1 - (1/2 - 1/2) - (1/3 - 1/3) - ... - (1/x - 1/x) - 1/x + 1
= 1 - 1/x + 1
= x / x + 1
1/1.2 + 1/2.3 + ... + 1/x(x + 1)
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/x - 1/x + 1
= 1 - 1/x + 1
= x/x + 1