Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s
A=1/1.2+1/3.4+...+1/2017.2018
A=1-1/2+1/3-1/4+1/5-....+1/2017-1/2018
Bạn để riêng 2 nhóm có dấu trừ và cộng
A=(1+1/3+1/5+...+1/2017) - (1/2+1/4+1/6+...+1/2018)
A= M - N
A= M+N-2N
M=1+1/3+1/5+...+1/2017
Giải thích các bước giải:
Với pp nguyên tố và một trong hai số 8p+1,8p−18p+1,8p−1 là số nguyên tố thì số thứ ba là một hợp số. Thật vậy:
+) Với pp và 8p+18p+1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p+1=8.2+1=178p+1=8.2+1=17 là số nguyên tố, 8p−1=8.2−1=158p−1=8.2−1=15 là hợp số.
Vậy bài toán đúng với p=2p=2
∙∙ Xét p=3p=3 thì 8p+1=8.3+1=258p+1=8.3+1=25 là hợp số (trái với giả thiết)
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 1⇒p=3k+1(k∈N)1⇒p=3k+1(k∈N).
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮38p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3
⇒⇒ 8p+18p+1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 2, hay p=3k+2 (k∈N)p=3k+2 (k∈N)
Khi đó: 8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒ 8p−18p−1 là hợp số.
Vậy, nếu 8p+18p+1 và pp đều là số nguyên tố thì 8p−18p−1 là hợp số.
+) Với pp và 8p−18p−1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p−1=8.2−1=158p−1=8.2−1=15 là hợp số (trái với giả thiết)
∙∙ Xét p=3p=3. Khi đó ta có:
8p−1=8.3−1=238p−1=8.3−1=23 là số nguyên tố, 8p+1=8.3+1=25⋮58p+1=8.3+1=25⋮5 là hợp số.
Vậy bài toán đúng với p=3p=3
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 2⇒p=3k+2(k∈N)2⇒p=3k+2(k∈N).
Khi đó: 8p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮38p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮3
⇒⇒ 8p−18p−1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 1, hay p=3k+1 (k∈N)p=3k+1 (k∈N)
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒ 8p+18p+1 là hợp số.
Vậy, nếu 8p−18p−1 và pp đều là số nguyên tố thì 8p+18p+1 là hợp số
Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p + 1 là hợp số .
* Nếu p = 3 \(\Rightarrow\) 8p - 1 = 23 là nguyên tố , 8p + 1 = 25 là hợp số ( thỏa mãn )
* Xét : p # 3
Ta thấy : p - 1 , p , p + 1 là 3 số nguyên liên tiếp , nên phải có 1 số chia hết cho 3 .
p nguyên tố khác 3 nên p - 1 hoặc p + 1 chia hết cho 3 \(\Rightarrow\) ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vậy : ( 8p - 1 ) ( 8p + 1 ) = 64p2 - 1 = 63p2 + p2 - 1 = 3 . 21p2 + ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vì 8p - 1 là số nguyên tố lớn hơn 3 \(\Rightarrow\) 8p + 1 chia hết cho 3 , hiển nhiên 8p + 1 > 3
\(\Rightarrow\) 8p + 1 là hợp số .
Bạn tham khảo bài của mình nhé !!
Đúng
tk mk nha
thank
Vì 1!=1
=> 1+1=1!+1! là đúng.