K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

Đúng

tk mk nha

thank

22 tháng 2 2019

1!=1

=> 1+1=1!+1! là đúng.

Bài 1:Tìm các số nguyên tố p sao cho:p+2 và p+4 là các số nguyên tố.Giải:p là số nguyên tố nên:-Nếu p=2 thì ........... =4 và .............=6 là ..............-Nếu p=3 thì ................. và ..................... là ........................-Nếu p>3 thì p=3k+1 hoặc p=3k+2  trong đó k khác 0,ta có:p=3k+1 thì p+2 =.................. là ....................... cho 3 và 3k+3 lớn hơn ..... nên...
Đọc tiếp

Bài 1:Tìm các số nguyên tố p sao cho:

p+2 và p+4 là các số nguyên tố.

Giải:p là số nguyên tố nên:

-Nếu p=2 thì ........... =4 và .............=6 là ..............

-Nếu p=3 thì ................. và ..................... là ........................

-Nếu p>3 thì p=3k+1 hoặc p=3k+2  trong đó k khác 0,ta có:

  • p=3k+1 thì p+2 =.................. là ....................... cho 3 và 3k+3 lớn hơn ..... nên ........................................................
  • p=3k+2 thì p+4 =.............. là .............................cho 3 và 3k+6 lớn hơn .....nên................................................................

Vậy,.....................................................................................................................

Bài 2:Bạn Nam đem số tự nhiên a chia cho 22 được số dư là 7,sau đó bạn Nam đem số a chia cho 36 được số dư là  4 .

Nếu bạn Nam làm  phép chia thứ nhất là đúng thì phép chia thứ 2 đúng hay sai?

Giải:Theo  đề bài ,ta có:

a=.............+..........[1]

a=................+..............[2]

Với p,q thuộc N.Như vậy,22p và  36q hoặc bằng ...........hoặc là........,do đó theo [1]thì......................,còn theo [2]thì ...................

Vậy ,nếu bạn Nam ..................................................................... 

Nhanh lên nhé,10 tk

 

 

0
26 tháng 1 2016

=>2.2x+2.1=5x+5.1

=>4x+2=5x+5

=>5x-4x=2-5

=>x=-3

Vậy x=-3

26 tháng 1 2016

kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s

25 tháng 5 2018

A=1/1.2+1/3.4+...+1/2017.2018

A=1-1/2+1/3-1/4+1/5-....+1/2017-1/2018

Bạn để riêng 2 nhóm có dấu trừ và cộng

A=(1+1/3+1/5+...+1/2017) - (1/2+1/4+1/6+...+1/2018)

A=  M                 -                  N

A= M+N-2N

M=1+1/3+1/5+...+1/2017

30 tháng 4 2020

bằng \(-\frac{1}{2018}\)

6 tháng 3 2020

Giải thích các bước giải:

Với pp nguyên tố và một trong hai số 8p+1,8p−18p+1,8p−1 là số nguyên tố thì số thứ ba là một hợp số. Thật vậy:

+) Với pp và 8p+18p+1 là số nguyên tố thì ta có:

∙∙ Xét p=2p=2. Khi đó ta có:

8p+1=8.2+1=178p+1=8.2+1=17 là số nguyên tố, 8p−1=8.2−1=158p−1=8.2−1=15 là hợp số.

Vậy bài toán đúng với p=2p=2

∙∙ Xét p=3p=3 thì 8p+1=8.3+1=258p+1=8.3+1=25 là hợp số (trái với giả thiết)

∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.

Giả sử pp chia 33 dư 1⇒p=3k+1(k∈N)1⇒p=3k+1(k∈N).

Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮38p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3

⇒⇒ 8p+18p+1 là hợp số (trái với giả thiết).

Do đó pp chia 3 dư 2, hay p=3k+2 (k∈N)p=3k+2 (k∈N)

Khi đó: 8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒ 8p−18p−1 là hợp số.

Vậy, nếu 8p+18p+1 và pp đều là số nguyên tố thì 8p−18p−1 là hợp số.

+) Với pp và 8p−18p−1 là số nguyên tố thì ta có:

∙∙ Xét p=2p=2. Khi đó ta có:

8p−1=8.2−1=158p−1=8.2−1=15 là hợp số (trái với giả thiết)

∙∙ Xét p=3p=3. Khi đó ta có:

8p−1=8.3−1=238p−1=8.3−1=23 là số nguyên tố, 8p+1=8.3+1=25⋮58p+1=8.3+1=25⋮5 là hợp số.

Vậy bài toán đúng với p=3p=3

∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.

Giả sử pp chia 33 dư 2⇒p=3k+2(k∈N)2⇒p=3k+2(k∈N).

Khi đó: 8p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮38p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮3

⇒⇒ 8p−18p−1 là hợp số (trái với giả thiết).

Do đó pp chia 3 dư 1, hay p=3k+1 (k∈N)p=3k+1 (k∈N)

Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒ 8p+18p+1 là hợp số.

Vậy, nếu 8p−18p−1 và pp đều là số nguyên tố thì 8p+18p+1 là hợp số 

6 tháng 3 2020

Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p + 1 là hợp số .

* Nếu p = 3 \(\Rightarrow\) 8p - 1 = 23 là nguyên tố , 8p + 1 = 25 là hợp số ( thỏa mãn )

* Xét : p # 3

Ta thấy : p - 1 , p , p + 1 là 3 số nguyên liên tiếp , nên phải có 1 số chia hết cho 3 .

p nguyên tố khác 3 nên p - 1 hoặc p + 1 chia hết cho 3 \(\Rightarrow\) ( p - 1 ) ( p + 1 ) chia hết cho 3 .

Vậy : ( 8p - 1 ) ( 8p + 1 ) = 64p- 1 = 63p2 + p2 - 1 = 3 . 21p2 + ( p - 1 ) ( p + 1 ) chia hết cho 3 .

Vì 8p - 1 là số nguyên tố lớn hơn 3 \(\Rightarrow\) 8p + 1 chia hết cho 3 , hiển nhiên 8p + 1 > 3

\(\Rightarrow\) 8p + 1 là hợp số  .

Bạn tham khảo bài của mình nhé !!