Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n}\right)\\ =\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{n-1}{n}\\ =\frac{1}{n}\)
b) \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{n}\right)\\ =\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{n+1}{n}\\ =n+1\)
c) \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\\ =\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot...\cdot\frac{\left(n-1\right)\left(n+1\right)}{n^2}\\ =\frac{\left[1\cdot2\cdot3\cdot...\cdot\left(n-1\right)\right]\cdot\left[3\cdot4\cdot5\cdot...\cdot\left(n+1\right)\right]}{\left(2\cdot3\cdot4\cdot...\cdot n\right)\left(2\cdot3\cdot4\cdot...\cdot n\right)}\\ =\frac{n+1}{2n}\)
d) \(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{99\cdot101}\right)\\ =\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot...\cdot\frac{10000}{99\cdot101}\\ =\frac{2^2\cdot3^2\cdot...\cdot100^2}{1\cdot3\cdot2\cdot4\cdot...\cdot99\cdot101}\\ =\frac{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\left(3\cdot4\cdot...\cdot101\right)}\\ =\frac{2\cdot100}{101}\\ =\frac{200}{101}\)
\(C=\left(\dfrac{1}{200^2}-1\right)\left(\dfrac{1}{199^2-1}\right)...\left(\dfrac{1}{101^2-1}\right)\)
\(C=\dfrac{1-200^2}{200^2}.\dfrac{1-199^2}{199^2}.\dfrac{1-198^2}{198^2}...\dfrac{1-101^2}{101^2}\)
\(C=\dfrac{\left(1-200\right)\left(1+200\right)}{200^2}.\dfrac{\left(1-199\right)\left(1+199\right)}{199^2}...\dfrac{\left(1-100\right)\left(1+100\right)}{100^2}.\dfrac{\left(1-101\right)\left(1+101\right)}{101^2}\) \(C=\dfrac{-199.201}{200.200}.\dfrac{-198.200}{199.199}.\dfrac{-197.199}{198.198}...\dfrac{-99.101}{100.100}.\dfrac{-100.102}{101.101}\)
\(C=\dfrac{199.201}{200.200}.\dfrac{198.200}{199.199}.\dfrac{197.199}{198.198}...\dfrac{99.101}{100.100}.\dfrac{100.102}{101.101}\)
\(\Rightarrow C=\dfrac{200}{2.101}=\dfrac{201}{202}\)
Câu 2 mik chịu r sorry:(
a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(A=1-\frac{1}{2^{50}}
\(\dfrac{1-1}{1+2}+\dfrac{1-1}{1+2+3}+\dfrac{1-1}{1+2+3+4}+...+\dfrac{1-1}{1+2+3+...+2012}\)
\(=\dfrac{0}{1+2}+\dfrac{0}{1+2+3}+\dfrac{0}{1+2+3+4}+...+\dfrac{0}{1+2+3+4+...+2012}\)
\(=0+0+0+...+0\)
\(=0\)
---
Bài này dễ mà bạn. Cơ mà hình như bạn ghi sai đề, sao khúc đầu thì nhân mà khúc cuối lại cộng thế?
Để tính giá trị của biểu thức B = 1 + 1/(2+1) + 1/(2^2+1) + 1/(2^4+1) + ... + 1/(2^(2^n)+1), ta có thể sử dụng công thức tổng của dãy số hình học.
Công thức tổng của dãy số hình học là: S = a/(1-r), trong đó a là số hạng đầu tiên và r là công bội.
Ứng dụng công thức này vào biểu thức B, ta có: B = 1 + 1/(2+1) + 1/(2^2+1) + 1/(2^4+1) + ... + 1/(2^(2^n)+1) = 1 + 1/3 + 1/5 + 1/17 + ... + 1/(2^(2^n)+1)
Với a = 1 và r = 1/4 (vì mỗi số hạng tiếp theo là 1/4 lần số hạng trước đó), ta có: B = 1/(1-1/4) - 1 = 4/3 - 1 = 1/3
Vậy giá trị của biểu thức B là 1/3.
1 + 1 + 1 - 1 = 1 - 1 + 2
1 nka đúng ko nhờ