K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

1+1=2 nhé

12 tháng 3 2021

1+1=2

HỌC TỐT

9 tháng 7 2021

Đặt S = \(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\)

=> 72S = 49S = \(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\)

=> 49S - S = \(\left(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\right)-\left(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\right)\)

=> 48S = \(1-\frac{1}{7^{100}}\)

=> \(S=\frac{1-\frac{1}{7^{100}}}{48}\)

Khi đó A = \(\left(\frac{1-\frac{1}{7^{100}}}{48}\right):\left(1-\frac{1}{7^{100}}\right)=\frac{1}{48}\)

DD
20 tháng 7 2021

\(\left|x+1\right|+\left|x+3\right|+...+\left|x+101\right|=52x\)

Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)

Do đó phương trình đã cho tương đương với: 

\(\left(x+1\right)+\left(x+3\right)+...+\left(x+101\right)=52x\)

Tổng ở vế trái là tổng các số cách đều, số hạng sau hơn số hạng trước \(2\)đơn vị. 

Tổng ở vế trái có số số hạng là: \(\left[\left(x+101\right)-\left(x+1\right)\right]\div2+1=51\)

Phương trình tương đương: 

\(51x+\frac{\left(101+1\right).51}{2}=52x\)

\(\Leftrightarrow x=2601\)

9 tháng 7 2021

Đặt S = \(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\)

=> 24S = 16S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}\)

=> 16S - S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}-\left(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\right)\)

=> 15S = \(2^3-\frac{1}{2^{101}}\)

=> S = \(\frac{2^3-\frac{1}{2^{101}}}{15}\)

Khi đó A = \(\frac{2^3-\frac{1}{2^{101}}}{15}:\left(2^3-\frac{1}{2^{101}}\right)=\frac{1}{15}\)

9 tháng 7 2021

kết bạn đi toán lớp mấy vậy

14 tháng 7 2021

khong biet

\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)

\(\Rightarrow-\frac{13}{3}.\left(\frac{3}{6}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{4}{12}-\frac{6}{12}-\frac{9}{12}\right)\)

\(\Rightarrow-\frac{13}{3}.\frac{2}{6}\le x\le-\frac{2}{3}.\frac{-11}{12}\)

\(\Rightarrow\frac{-13}{9}\le x\le\frac{11}{18}\)

\(\Rightarrow\frac{-26}{18}\le x\le\frac{11}{18}\)

=> -1,44444444444........... ≤ x ≤ 0,6111111111...........

Mà x ∈ Z

=> x ∈ { -1 ; 0 }

14 tháng 7 2021

\(x\in\varnothing\) 

9 tháng 8 2021

Ta thấy rằng 2|y+1| luôn luôn lớn hơn 0 

Nên suy ra được là : |x-3|+2(y+1)=6

<=>|x-3|+2y=4

<=>|x-3|=4-2y

Có hai trường hợp

1, x-3=4-2y

<=>x-7-2y=0

<=>x-2y=7

2, 3-x=4-2y

<=>x-2y=-1

Đến đây ta thấy hai kết quả khác hoàn toàn nên ko thảo mãn x và y

DD
26 tháng 7 2021

Ta có bất đẳng thức giá trị tuyệt đối: 

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

Dấu \(=\)khi \(AB\ge0\).

d) \(\left|x+1\right|+\left|x+2\right|+\left|2x-3\right|\)

\(\ge\left|x+1+x+2\right|+\left|2x-3\right|\)

\(=\left|2x+3\right|+\left|3-2x\right|\)

\(\ge\left|2x+3+3-2x\right|=6\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)\ge0\\\left(2x+3\right)\left(3-2x\right)\ge0\end{cases}}\Leftrightarrow-1\le x\le\frac{3}{2}\).

e) \(\left|x+1\right|+\left|x+2\right|+\left|x-3\right|+\left|x-5\right|\)

\(=\left(\left|x+1\right|+\left|3-x\right|\right)+\left(\left|x+2\right|+\left|5-x\right|\right)\)

\(\ge\left|x+1+3-x\right|+\left|x+2+5-x\right|\)

\(=4+7=11\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x+1\right)\left(3-x\right)\ge0\\\left(x+2\right)\left(5-x\right)\ge0\end{cases}}\Leftrightarrow-1\le x\le3\).

Do đó phương trình đã cho vô nghiệm. 

13 tháng 11 2021

Bài 1

Hình 1 Tam giác ABC = ADE

Bài 2

Hình 2 Tam giác MRQ = NRS = QPT = OST

 

 

NM
9 tháng 8 2021

ta có \(2\left|y+1\right|=6-\left|x-3\right|\)

Do vế trái là số chẵn và không âm nên vế phải cũng là số chẵn không âm

nên : \(\hept{\begin{cases}\left|x-3\right|\text{ chẵn}\\\left|x-3\right|\le6\end{cases}}\Rightarrow\left|x-3\right|=0,2,4,6\)

\(\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\\orbr{\begin{cases}y=2\\y=-4\end{cases}}\end{cases}}}\)TH1\(\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\text{ hoặc }\hept{\begin{cases}x=3\\y=-4\end{cases}}}}\)

TH2: \(\hept{\begin{cases}\left|x-3\right|=2\\\left|y+1\right|=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}\text{ hoặc }\hept{\begin{cases}x=1\\y=-3\end{cases}}\text{ hoặc }\hept{\begin{cases}x=5\\y=1\end{cases}}\text{ hoặc }\hept{\begin{cases}x=5\\y=-3\end{cases}}}}\)

TH3: \(\hept{\begin{cases}\left|x-3\right|=4\\\left|y+1\right|=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=0\end{cases}\text{ hoặc }\hept{\begin{cases}x=7\\y=-2\end{cases}}\text{ hoặc }\hept{\begin{cases}x=-1\\y=0\end{cases}}\text{ hoặc }\hept{\begin{cases}x=-1\\y=-2\end{cases}}}}\)

TH4: \(\hept{\begin{cases}\left|x-3\right|=6\\\left|y+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=-1\end{cases}\text{ hoặc }\hept{\begin{cases}x=-3\\y=-1\end{cases}}}}\)

NM
8 tháng 8 2021

để bài đầy đủ là gì bạn nhỉ