Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét ΔOAB có OA=OB=AB
nên ΔOAB đều
=>\(\widehat{AOB}=60^0\)
=>Số đo cung nhỏ AB là 600
Số đo cung lớn AB là 360-60=3000
b: ΔOAB đều
mà OI là đường trung tuyến
nên \(OI=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{R\sqrt{3}}{2}\)
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
=>M nằm trên đường trung trực của AB(1)
ΔOAB cân tại O
mà OI là đường trung tuyến
nên OI là đường trung trực của AB(2)
Từ (1),(2) suy ra O,I,M thẳng hàng
a: Xét ΔBAO vuông tại A có \(cosAOB=\dfrac{OA}{OB}=\dfrac{1}{\sqrt{2}}\)
=>\(\widehat{AOC}=45^0\)
=>\(sđ\left(OA;OC\right)=45^0\)
b: Số đo cung AC nhỏ là:
\(sđ\stackrel\frown{AC}=45^0\)
Số đo cung AC lớn là:
3600-450=3150
a) Trong tứ giác AOBM có = = .
Suy ra cung AMB + =
=> cung AMB= -
= -
=
b) Từ = . Suy ra số đo cung nhỏ AB = và số đo cung lớn AB :
Cung AB = - =
a: Ta có: ΔOAM vuông tại A
=>\(OA^2+AM^2=OM^2\)
=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AM=R\sqrt{3}\)
b: Xét ΔMOA vuông tại A có \(sinMOA=\dfrac{MA}{MO}=\dfrac{\sqrt{3}}{2}\)
nên \(\widehat{MOA}=60^0\)
=>\(\widehat{AON}=60^0\)
=>\(\widehat{\left(ON;OA\right)}=60^0\)
c: Xét (O) có
\(\widehat{AON}\) là góc ở tâm chắn cung AN nhỏ
Do đó: \(sđ\stackrel\frown{AN}_{nhỏ}=\widehat{AON}=60^0\)
Số đo cung lớn AN là:
\(360-60=300^0\)
góc AOB=90-36=54 độ
=>sđ cung AB nhỏ=54 độ
sđ cung AB lớn=360-54=306 độ
Bài 1.1
a: \(\widehat{AOB}=180^0-35^0=145^0\)
b: Số đo cung nhỏ AB là 120 độ
=>Số đo cung lớn AB là 360-120=240(độ)