Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: -1<x\(\ne\)0
Đặt \(log_3\left(x+1\right)=t\) (t\(\ne\)0)
bpt trở thành \(\frac{1}{3^t}>\frac{1+t}{3^t-1}\)
\(\Leftrightarrow\frac{1+t}{3^t-1}-\frac{1}{3^t}< 0\Leftrightarrow\frac{t.3^t+1}{3^t\left(3^t-1\right)}< 0\)
vì \(3^t>0\forall t\) nên ta có thể nhân 2 vế của bpt với \(3^t\)
Khi đó, ta có bpt \(\Leftrightarrow\frac{t.3^t+1}{3^t-1}< 0\)
*) Đặt \(f\left(t\right)=t.3^t+1\), f(0)=1
dễ thấy f(t) đồng biến trên tập R
*) Xét 2 trường hợp:
+TRƯỜNG HỢP 1) với t<0 \(\Leftrightarrow3^t< 1\Leftrightarrow3^t-1< 0\) (1)
vì \(\lim\limits_{t\rightarrow-\infty}\left[f\left(t\right)\right]=1\) nên f(t)>1 với mọi t \(\Leftrightarrow t.3^t+1>1\Rightarrow t.3^t+1>0\forall t\) (2)
kết hợp (1) và (2) ta thấy t<0 thỏa mãn bpt
+TRƯỜNG HỢP 2) với t>0 \(\Leftrightarrow3^t-1>0\) (3)
lại có f(t)>f(0) với mọi t>0 \(\Leftrightarrow t.3^t+1>1\) (4)
kết hợp (3) và (4) ta thấy không thỏa mãn bpt
vậy bpt đã cho tương đương t<0\(\Leftrightarrow log_3\left(x+1\right)< 0\Leftrightarrow x+1< 1\Leftrightarrow x< 0\)
kết hợp ĐK ta có -1<x<0
= -2³/3 + 2²/2 + 2.2 - [-(-1)³/3 + (-1)²/2 + 2.(-1)]
= -8/3 + 2 + 4 - 1/3 - 1/2 + 2
= 8 - 3 - 1/2
= 9/2
\(\int\limits^2_{-1}\left(-x^2+x+2\right)dx=\left(-\dfrac{x^3}{3}+\dfrac{x^2}{2}+2x\right)|^2_{-1}=\dfrac{9}{2}\)
\(I=\dfrac{1}{2}\int f\left(x^2\right)d\left(x^2\right)=\dfrac{1}{2}x^2\sqrt{\left(x^2\right)^2+1}+C=\dfrac{1}{2}x^2\sqrt{x^4+1}+C\)
Làm tiếp
\(t=\sqrt{x^4+1}\Rightarrow dt=\dfrac{1}{2}.\left(x^4+1\right)^{-\dfrac{1}{2}}.4.x^3=\dfrac{2x^3}{\sqrt{x^4+1}}dx\Rightarrow dx=\dfrac{1}{2}.\dfrac{\sqrt{x^4+1}dt}{x^3}dt\)
\(\Rightarrow\int x.\dfrac{2x^4+1}{\sqrt{x^4+1}}dx=\dfrac{1}{2}\int x.\dfrac{2x^4+1}{\sqrt{x^4+1}}.\dfrac{\sqrt{x^4+1}}{x^3}dt=\dfrac{1}{2}\int\dfrac{2x^4+1}{x^2}dt=\dfrac{1}{2}\int2x^2dt+\dfrac{1}{2}\int\dfrac{dt}{x^2}=\int\sqrt{t^2-1}dt+\dfrac{1}{2}\int\dfrac{dt}{\sqrt{t^2-1}}\)
Tất cả đã về dạng cơ bản
Xet \(I_1=\int\sqrt{t^2-1}dt\)
\(\sqrt{t^2-1}=\dfrac{1}{2}.\dfrac{2t^2-1}{\sqrt{t^2-1}}-\dfrac{1}{2\sqrt{t^2-1}}=\dfrac{1}{2}\left(\sqrt{t^2-1}+\dfrac{t^2}{\sqrt{t^2-1}}\right)-\dfrac{1}{2\sqrt{t^2-1}}\)
\(\left(t\sqrt{t^2-1}\right)'=\sqrt{t^2-1}+\dfrac{t^2}{\sqrt{t^2-1}}\)
\(\Rightarrow\int\sqrt{t^2-1}dt=\dfrac{1}{2}\int\left(t\sqrt{t^2-1}\right)'dt-\dfrac{1}{2}\int\dfrac{dt}{\sqrt{t^2-1}}=\dfrac{1}{2}\left(t\sqrt{t^2-1}\right)-\dfrac{1}{2}ln\left|t+\sqrt{t^2-1}\right|+C\)
\(\Rightarrow I=\dfrac{1}{2}t\sqrt{t^2-1}-\dfrac{1}{2}ln\left|t+\sqrt{t^2-1}\right|+\dfrac{1}{2}ln\left|t+\sqrt{t^2-1}\right|=\dfrac{1}{2}t\sqrt{t^2-1}=\dfrac{1}{2}.x^2\sqrt{x^4+1}+C\)
ô, đưa về phương trình thoi
áp dụng đạo hàm khảo sát hàm số
\(A=log_m\left(8m\right)=log_mm+log_m8\)
\(=1+log_m8\)
\(=1+\dfrac{1}{log_8m}=1+\dfrac{1}{log_{2^3}m}=1+\dfrac{1}{\dfrac{1}{3}\cdot log_2m}\)
\(=1+\dfrac{1}{\dfrac{1}{3}a}=1+1:\dfrac{a}{3}=1+\dfrac{3}{a}=\dfrac{a+3}{a}\)
=>Chọn A
1+1 = 2
hok tốt nhé