Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^3\text{ và }3^2\)
\(2^3=8\)
\(3^2=9\)
\(8< 9\Rightarrow2^3< 3^2\)
b) \(2^4\text{ và }4^2\)
\(2^4=16\)
\(4^2=16\)
\(16=16\Rightarrow2^4=4^2\)
c) \(2^5\text{ và }5^2\)
\(2^5=32\)
\(5^2=25\)
\(32>25\Rightarrow2^5>5^2\)
d) \(2^{10}\text{ và }100\)
\(2^{10}=1024\)
\(1024>100\Rightarrow2^{10}>100\)
mk giải cho câu A rồi tự suy mấy câu khác nhé!
ta có : A = 10^8 + 2/10^8 - 1
=> A = 10^8 - 1 + 3/10^8 - 1
=> A = 1+ 3/10^8 - 1
B = 10^8/10^8 - 3
=> B = 10^8 - 3 + 3/10^8 - 3
=> B = 1+ 3/10^8 - 3
vì 3/10^8 - 1 < 3/10^8 - 3
=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3
=> A < B
vậy A < B
cách này cô dạy mk đó
Ta có :
\(A=\dfrac{100^{10}+1}{100^{10}-1}=\dfrac{100^{10}-1+2}{100^{10}-1}=\dfrac{100^{10}-1}{100^{10}-1}+\dfrac{2}{100^{10}-1}=1+\dfrac{2}{100^{10}-1}\)
\(B=\dfrac{100^{10}-1}{100^{10}-3}=\dfrac{100^{10}-3+2}{100^{10}-3}=\dfrac{100^{10}-3}{100^{10}-3}+\dfrac{2}{100^{10}-3}=1+\dfrac{2}{100^{10}-3}\)
\(\) Vì \(1+\dfrac{2}{100^{10}-1}< 1+\dfrac{2}{100^{10}-3}\Rightarrow A< B\)
Ta có :
\(2^{100}\)=\(2^{31}\) .\(2^{69}\)
\(10^{31}\)=\(2^{31}\) .\(5^{31}\)
Để so sánh \(2^{100}\) và \(10^{31}\) ta so sánh \(2^{69}\) và \(5^{31}\)
\(5^{31}\) =\(5^{28}\).\(5^3\)=\(\left(5^4\right)^7\). \(5^3\) =\(625^7\) . 125
\(2^{69}\) =\(2^{63}\) . \(2^6\) = \(\left(2^9\right)^7\) .\(2^6\) =\(512^7\) . 64
Vì \(625^7\)>\(512^7\) ;125>64 => \(625^7\) . 125 >\(512^7\) . 64
=>\(5^{31}\) >\(2^{69}\)
Vì \(5^{31}\) >\(2^{69}\) =>\(10^{31}\) >\(2^{100}\)
Vậy \(10^{31}\) >\(2^{100}\)
a)\(\dfrac{2}{3}giờ< \dfrac{3}{4}giờ\)
b)\(\dfrac{7}{10}m< \dfrac{3}{4}m\)
c)\(\dfrac{7}{8}kg< \dfrac{9}{10}kg\)
d)\(\dfrac{5}{6}\)km/h >\(\dfrac{7}{9}\)km/h
ta có:\(A=\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{100}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{100^{10}-1}\)
\(B=\frac{100^{10}-1}{100^{10}-3}=\frac{100^{10}-3+2}{100^{10}-3}=\frac{100^{10}-3}{100^{10}-3}+\frac{2}{100^{10}-3}=1+\frac{2}{100^{10}-3}\)
vì 10010-1>10010-3
\(\Rightarrow\frac{2}{100^{10}-1}<\frac{2}{100^{10}-3}\)
=>A<B
10^100
10^100