Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=100;(250;[450-(22.52-22.52)])
=100;(250;450)=100;(5/9)=180
nhớ **** nha
\(A=\frac{1\cdot1}{1\cdot2}\cdot\frac{2\cdot2}{2\cdot3}\cdot\frac{3\cdot3}{3\cdot4}\cdot\frac{4\cdot4}{4\cdot5}=\frac{1\cdot2\cdot3\cdot4}{1\cdot2\cdot3\cdot4}\cdot\frac{1\cdot2\cdot3\cdot4}{2\cdot3\cdot4\cdot5}=\frac{1}{5}\)
a, \(x:\left[\left(1800+600\right):30\right]=560:\left(315-35\right)\)
\(\Rightarrow\) \(x:\left[2400:30\right]=560:280\)
\(\Rightarrow\) \(x:80=2\)
\(\Rightarrow\) \(x=160\)
b, \(\left[\left(250-25\right):15\right]:x=\left(450-60\right):130\)
\(\Rightarrow\) \(\left[225:15\right]:x=390:130\)
\(\Rightarrow\) \(15:x=3\)
\(\Rightarrow\) \(x=5\)
Ta có: A = 3 + 32 + 33 + ... + 3100
=> 3A = 32 + 33 + 34 + ... + 3101
=> 3A - A = 3101 - 3
=> 2A = 3101 - 3
=> 2A + 3 = 3101
=> x = 101
\(2A=3^2+3^3+...+3^{101}\)
\(2A-A=3^2-3^2+3^3-3^3+...+3^{101}-3\)
\(A=3^{101}-3\)
\(2.3^{101}-6+3=3^x\)
\(3.\left(2.3^{100}-1\right)=3^x\)
tách tử thành 1.3 ( cho 3 ra ngoài làm nhân tử chung)
=> ở mẫu còn nguyên tắc số thứ 2- số thứ 1 = tử
=> (1/1.2+1/2.3+.......+1/2015.2016 ) .3
= (2-1/1.2+3-2/2.3+......+2016-2015/2015.2016).3
= (2/1.2-1/1.2+3/2.3-2/2.3..........+2016/2015.2016- 2015/2015.2016).3
= ( 1-1/2+1/2-1/3+...........+ 1/2015-1/2016).3
= ( 1-1/2016 ) .3
= 2015/2016 .3
\(S=3.\left(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+...+\frac{1}{2015}.\frac{1}{2016}\right)\)
\(3S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(3S=1-\frac{1}{2016}\)
\(3S=\frac{2015}{2016}\)
\(S=\frac{2015}{2016}:3\)
\(S=\frac{2015}{6048}\)
\(=100:\left[250:\left(450-300\right)\right]\)
\(=100:\left(250:150\right)\)
\(=100:250\cdot150\)
\(=\dfrac{20\cdot5\cdot50\cdot3}{5\cdot50}\)
\(=60\)