Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{2010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Leftrightarrow x+1=2010\)
\(\Leftrightarrow x=2009\)
Bài 1
a) \(P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
b) \(S=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{33}{99}-\frac{1}{99}\)
\(=\frac{32}{99}\)
c)\(Q=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{10}{20}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Tk mình nha!!
Câu 2:
\(P=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\left(\frac{2}{2}+\frac{1}{2}\right).\left(\frac{3}{3}+\frac{1}{3}\right).\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{99}{99}+\frac{1}{99}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)
\(=\frac{3\cdot4\cdot5...100}{2.3.4...99}\)
\(=\frac{3\cdot100}{2}\)
\(=\frac{300}{2}=150\)
1)xE{2;0} 2)abcd=a000+b00+c0+d=a.1000+b.100+c.10+d=(a.1000+b.96+c.8)+(4.b+2.c+d)=8.(a.125+b.12+c)+(d+2.c+4.b). vì 8 chia hết cho 8 =>8.(a.125+b.12+c) chia hết cho 8. Mà d+2.c+4.b chia hết cho 8. =>8.(a.125+b.12+c)+(d+2.c+4.b) chia hết cho 8 hay abcd chia hết cho 8. 3)3.S=1.2.3+2.3.3+3.4.3+...+99.100.3. =>3S=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98) =>3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100. =>3S=99.100.101.=>3s=979902=>S=326634.
tách tử thành 1.3 ( cho 3 ra ngoài làm nhân tử chung)
=> ở mẫu còn nguyên tắc số thứ 2- số thứ 1 = tử
=> (1/1.2+1/2.3+.......+1/2015.2016 ) .3
= (2-1/1.2+3-2/2.3+......+2016-2015/2015.2016).3
= (2/1.2-1/1.2+3/2.3-2/2.3..........+2016/2015.2016- 2015/2015.2016).3
= ( 1-1/2+1/2-1/3+...........+ 1/2015-1/2016).3
= ( 1-1/2016 ) .3
= 2015/2016 .3
\(S=3.\left(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+...+\frac{1}{2015}.\frac{1}{2016}\right)\)
\(3S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(3S=1-\frac{1}{2016}\)
\(3S=\frac{2015}{2016}\)
\(S=\frac{2015}{2016}:3\)
\(S=\frac{2015}{6048}\)
Xin lỗi máy tớ chỉ có cách viết phân số thế này / thông cảm
Ta có : A= 1/1 -1/2 + 1/2 -1/3 + 1/3 - 1/4 + 1/4 -1/5 +... + 1/19 - 1/20
=> A= 1/1 - 1/20
=> A = 19/20
Vậy A = 19/20
\(A=\frac{1\cdot1}{1\cdot2}\cdot\frac{2\cdot2}{2\cdot3}\cdot\frac{3\cdot3}{3\cdot4}\cdot\frac{4\cdot4}{4\cdot5}=\frac{1\cdot2\cdot3\cdot4}{1\cdot2\cdot3\cdot4}\cdot\frac{1\cdot2\cdot3\cdot4}{2\cdot3\cdot4\cdot5}=\frac{1}{5}\)
A= 1/2 * 2/3 * 3/4 * 4/5
= 1*2*3*4/2*3*4*5
= 1/5