Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\left(x+10\right)+\left(2x-15\right)-\left(x-20\right)\)
\(=x+10+2x-15-x+20\)
\(=2x+15\)
\(b,\)Thay \(x=15\)vào biểu thức A = 2x + 15
Ta được : \(A=2\times15+15\)
\(\Rightarrow A=45\)
a) A = (x + 10) + (2x - 15) - (x - 20)
A = x + 10 + 2x - 15 - x + 20
A = x + 10 + 2x + (-15) + (-x) + 20
A = x + (-x) + 2x + 10 + 20 + (-15)
A = 2x + 15
b) x = 15 thì A = 2x + 15 = 2.15 + 15 = 15.3 = 45
A=-(3x+7)+(5x-2)+(2x-10)
=-3x-7+5x-2+2x-10
=(-3x+5x+2x)-(7+2+10)
=4x-19
B = (6x+8)-(4x-5)-3x
= 6x+8-4x+5-3x
= (6x-4x-3x) + (8+5)
= -x + 13
= 13-x
C = 2(5x+3) - (2x-1) + 12
= 10x+6 - 2x + 1 + 12
= (10x-2x) + (6+1+12)
= 8x + 19
D = (x+7)-3(x+1)+2x-5
= x+7-3x-3+2x-5
= (x-3x+2x) + (7-3-5)
= -1
Trả lời:
A = ( 2x - 7 )4
Ta có: \(\left(2x-7\right)^4\ge0\forall x\)
Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2
Vậy GTNN của A = 0 khi x = 7/2
B = ( x + 1 )10 + ( y - 2 )20 + 7
Ta có: \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1 và y - 2 = 0 <=> y = 2
Vậy GTNN của B = 7 khi x = -1 và y = 2
C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20
Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)
Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5
Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5
D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000
Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)
Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3
Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3
E = ( x - y )50 + ( y - 2 )60 + 3
Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\); \(\left(y-2\right)^{60}\ge0\forall y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)
Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2
Vậy GTNN của E = 3 khi x = y = 2
(2x-y+z)+(y-z+x)+(z-2x+y)
= 2x - y + z + y - z + x + z - 2x + y
= (2x - 2x + x) + (y - y + y) + ( z - z + z)
= x + y + z
Chú ý rằng |a| = b với b > 0 thì a = b hoặc a = - b.
a ) x ∈ − 5 8 ; 5 8 b ) x ∈ 1 12 ; 1 4
c ) x ∈ − 17 30 ; 9 10 d ) x ∈ − 19 4 ; 11 2
= 100-2x+(-20+74-12-2x)
= 100-2x+(42-2x)
= 100-2x+42-2x
= 142-2x
k mk nha
bạn ơi mình viết nhầm số 4 ở chỗ 74x