Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10
⇔\(\dfrac{2625\left(x-130\right)}{52500}\)+\(\dfrac{2100\left(x-100\right)}{52500}\)+\(\dfrac{1750\left(x-60\right)}{52500}\)+\(\dfrac{1500\left(x-10\right)}{52500}\)=\(\dfrac{525000}{52500}\)
⇔2625\(x\)-341250+2100\(x\)-210000+1750\(x\)-105000+1500\(x\)-15000=525000
⇔ 7975\(x\) = 1196250
⇔ \(x\) = \(\dfrac{1196250}{7975}\)
⇔\(x \) = 150
b: \(\Leftrightarrow\dfrac{20}{x}-\dfrac{20}{x+20}=\dfrac{1}{6}\)
=>\(\dfrac{20x+400-20x}{x\left(x+20\right)}=\dfrac{1}{6}\)
=>x*(x+20)=400*6=2400
=>x^2+20x-2400=0
=>(x+60)(x-40)=0
=>x=-60 hoặc x=40
c: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1(nhận)
+)x/5=y/2 và x-y=12
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x/5=y/2=x-y/5-2
Mà x-y=12=>x/5=y/2=12/3=4
=>x=4×5=20
y=4×2=8
Vậy x=20;y=8
+)7x=4y vày-x=24
Ta có 7x=4y=>y/7=x/4
Áp dung tính chất dãy tỉ số bằg nhau ta có
y/7=x/4=y-x/7-4
Mà y-x=24=>y/7=x/4=24/3=8
=>y=8×7=56
x=8×4=32
Vẫy=32;y=56
Còn lại bn dựa vào rồi làm nha
Chúc bạn học tốt 👍
\(\dfrac{60}{x}-\dfrac{60}{x+20}=\dfrac{1}{2}\left(đk:x>0\right)\)
\(\Leftrightarrow\dfrac{120\left(x+20\right)-120x-x\left(x+20\right)}{2x\left(x+20\right)}=0\)
\(\Leftrightarrow120x+2400-120x-x^2-20x=0\)
\(\Leftrightarrow-x^2-20x+2400=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=40\left(n\right)\\x_2=-60\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{40\right\}\)
Bài làm:
1) đk: \(x\ne0;x\ne-5\)
Ta có: \(\frac{30}{x}-\frac{30}{x+5}=1\)
\(\Leftrightarrow\frac{30\left(x+5\right)-30x}{x\left(x+5\right)}=1\)
\(\Leftrightarrow x^2+5x=150\)
\(\Leftrightarrow x^2+5x-150=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+15=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=10\\x=-15\end{cases}}\)
2) đk: \(x\ne0;x\ne-2\)
Ta có: \(\frac{60}{x}-\frac{60}{x+2}=1\)
\(\Leftrightarrow\frac{60\left(x+2\right)-60x}{x\left(x+2\right)}=1\)
\(\Leftrightarrow x^2+2x=120\)
\(\Leftrightarrow x^2+2x-120=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=10\\x=-12\end{cases}}\)
\(\frac{30}{x}-\frac{30}{x+5}=1\)( ĐKXĐ : \(x\ne0;x\ne-5\))
<=> \(30\left(\frac{1}{x}-\frac{1}{x+5}\right)=1\)
<=> \(30\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{x\left(x+5\right)}\right)=1\)
<=> \(30\left(\frac{5}{x\left(x+5\right)}\right)=1\)
<=> \(\frac{5}{x\left(x+5\right)}=\frac{1}{30}\)
<=> \(5\cdot30=x\left(x+5\right)\)
<=> \(x^2+5x-150=0\)
<=> \(x^2+15x-10x-150=0\)
<=> \(x\left(x+15\right)-10\left(x+15\right)=0\)
<=> \(\left(x-10\right)\left(x+15\right)=0\)
<=> \(\orbr{\begin{cases}x-10=0\\x+15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-15\end{cases}}\)( tmđk )
Vậy S = { 10 ; -15 }
\(\frac{60}{x}-\frac{60}{x+2}=1\)( ĐKXĐ : \(x\ne0;x\ne-2\))
<=> \(60\left(\frac{1}{x}-\frac{1}{x+2}\right)=1\)
<=> \(60\left(\frac{x+2}{x\left(x+2\right)}-\frac{x}{x\left(x+2\right)}\right)=1\)
<=> \(60\left(\frac{2}{x\left(x+2\right)}\right)=1\)
<=> \(\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)
<=> \(2\cdot60=x\left(x+2\right)\)
<=> \(x^2+2x-120=0\)
<=> \(x^2+12x-10x-120=0\)
<=> \(x\left(x+12\right)-10\left(x+12\right)=0\)
<=> \(\left(x-10\right)\left(x+12\right)=0\)
<=> \(\orbr{\begin{cases}x-10=0\\x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-12\end{cases}}\)
Vậy S = { 10 ; -12 }
\(A=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-10y+25\right)+\frac{19}{4}\)
\(=\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right)+\left(y^2-2\cdot5y+5^2\right)+\frac{19}{4}=\left(x+\frac{1}{2}\right)^2+\left(y-5\right)^2+\frac{19}{4}>=\frac{19}{4}\)
dấu = xảy ra khi \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
\(\left(y-5\right)^2=0\Rightarrow y-5=0\Rightarrow y=5\)
vậy min A là \(\frac{19}{4}\)khi \(x=-\frac{1}{2};y=5\)
( đề là tìm gtnn à ??? )
\(A=x^2+x+y^2-10y+30\)
\(A=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-10y+25\right)+\frac{19}{4}\)
\(A=\left(x+\frac{1}{2}\right)^2+\left(y-5\right)^2+\frac{19}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\)
\(\left(y-5\right)^2\ge0\)
\(\Rightarrow A\ge\frac{19}{4}\)
Dấu " = " xảy ra khi :
\(\hept{\begin{cases}x+\frac{1}{2}=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=5\end{cases}}\)
Vậy \(A_{Min}=\frac{19}{4}\Leftrightarrow\left(x;y\right)=\left(-\frac{1}{2};5\right)\)
100 - 20 . x = 60
20 .x = 100 - 60
20 . x = 40
x = 40 : 20
x = 2
30 + 60 . x = 90
60 . x = 90 - 30
60 . x = 60
x = 60 : 60
x = 1
a) x=2
b) x=1
k nha. thanks