Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi Nhân 99/ 100 với một số ta được kết quả bằng 100 .
Vậy phép nhân đó là:.......….…
Giảinhanh giúp mình với
a: S=1(1+1)+2(1+2)+...+100(1+100)
=1+2+...+100+1^2+2^2+...+100^2
\(=\dfrac{100\cdot102}{2}+\dfrac{100\cdot\left(100+1\right)\cdot\left(2\cdot100+1\right)}{6}\)
\(=100\cdot51+\dfrac{100\cdot101\cdot201}{6}\)
=343450
b: \(A=1\cdot2\cdot3+2\cdot3\cdot4+...+100\cdot101\cdot102\)
=>\(4\cdot A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+...+100\cdot101\cdot102\left(103-99\right)\)
=>4*A=100*101*102*103
=>A=25*101*102*103
a) de thấy vì tích trên có 100 thừa số nên có thể viết như sau:
A=(100-1)(100-2)(100-3)...(100-100) = 99x98x97....x0 = 0
tk nha mk trả lời đầu tiên đó!!!
Bài 1:
\(a,\)
\(x+a=a\)
\(\Leftrightarrow x=a-a\)
\(\Leftrightarrow x=0\)
\(b,\)
\(x+a>a\)
\(\Leftrightarrow x>a-a\)
\(\Leftrightarrow x>0\)
\(c,\)
\(x+a< a\)
\(\Leftrightarrow x< a-a\)
\(\Leftrightarrow x=0\)
\(d,\)
\(x\left(x+1\right)=12\)
Ta thấy: \(x\) và \(x+1\) là \(2\) số tự nhiên liên tiếp.
\(\Leftrightarrow x\left(x+1\right)=12\) là 2 số tự nhiên liên tiếp có tích bằng \(12\)
Ta lại có: \(12=1.12=2.6=3.4\)
Mà chỉ có \(3\) và \(4\) là 2 số tự nhiên liên tiếp.
Ta có: \(x+1>x\) Mà \(4>3\)
\(\Leftrightarrow x=3\)
\(e,\)
\(x\left(x+1\right)\left(x+2\right)=120\)
Ta thấy: \(x\) ; \(x+1\) ; \(x+2\) là 3 số tự nhiên liên tiếp.
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=120\)là 3 số tự nhiên liên tiếp có tích bằng \(120\)
Khi phân tích \(120\) ra thừa số nguyên tố, ta có :
\(120=2^3.3.5=2.2.2.3.5=\left(2.2\right).5.\left(2.3\right)=4.5.6\)
Ta lại thấy: \(x< x+1< x+2\) Mà \(4< 5< 6\)
\(\Leftrightarrow x=4\)
Bài 2:
\(A=\left(100-1\right)\left(100-2\right)...\left(100-n\right)\)
Vì bài toán cho có \(100\) thừa số. Mà từ \(1\rightarrow100\) có \(100\) thừa số.
\(\Leftrightarrow n=100\)
Thay \(n=100\) ta có:
\(A=\left(100-1\right)\left(100-2\right)...\left(100-100\right)\)
\(\Leftrightarrow A=\left(100-1\right)\left(100-2\right)....0\)
\(\Leftrightarrow A=0\)
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
Tính x1 + x2 +...+ x99 + x100 + x101 = 0
(x1 + x2)+ ...+ ( x99 + x100)+ x101 = 0
1 + ... + 1 + x101 = 0
1 x 50 + x101 = 0
50 + x101 = 0
x101 = 0 - 50
x101 = -50
Ta có: x100 + x101 = 1
x100 + (-50) = 1
x100 = 1-(-50)
x100 =51
Vậy x101 = 51