Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}=\frac{x+1}{2\left(x+3\right)}+\frac{3x+2}{x\left(x+3\right)}\)
\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{6x+4}{2x\left(x+3\right)}=\frac{x^2+7x+4}{2x\left(x+3\right)}\)
b, Sua de : \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{1}{x}\)
\(\frac{x^2+2}{2xy^3}-\frac{2x+2}{2xy^3}=\frac{x^2+2-2x-2}{2xy^3}=\frac{x^2-2x}{2xy^3}=\frac{x\left(x-2\right)}{2xy^3}=\frac{x-2}{2y^3}\)
\(\frac{4}{x-5}-\frac{1}{x+5}+\frac{13x-x^2}{25-x^2}=\frac{4}{x-5}-\frac{1}{x+5}+\frac{x^2-13x}{x^2-25}\)
\(=\frac{4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{\left(x-5\right)\left(x+5\right)}+\frac{x^2-13x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{4x+20-x+5+x^2-13x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)
\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)
\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)
\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)
\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)
b: =xy-x-y+1
=x(y-1)-(y-1)
=(x-1)(y-1)
c: =(x-2y)^2-4y
\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)
d: =16-(x^2-2xy+y^2)
=16-(x-y)^2
=(4-x+y)(4+x-y)
\(\frac{x+2}{x}+\frac{2x-1}{2-x}-\frac{x-8}{x^2-2x}\)
\(=\frac{x+2}{x}-\frac{2x-1}{x-2}-\frac{x-8}{x\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{x\left(x-2\right)}-\frac{x\left(2x-1\right)}{x\left(x-2\right)}-\frac{x-8}{x\left(x-2\right)}\)
\(=\frac{x^2-4x+4-2x^2+x-x+8}{x\left(x-2\right)}=\frac{-x^2-4x+12}{x\left(x-2\right)}\)
\(=\frac{\left(x+6\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x+6}{x}\)
a.
$12x^3y-24x^2y^2+12xy^3=12xy(x^2-2xy+y^2)=12xy(x-y)^2$
b.
$x^2-6x+xy-6y=(x^2+xy)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)$
c.
$2x^2+2xy-x-y=2x(x+y)-(x+y)=(x+y)(2x-1)$
d.
$x^3-3x^2+3x-1=(x-1)^3$
e.
$3x^2-3y^2-12x-12y=(3x^2-3y^2)-(12x+12y)$
$=3(x-y)(x+y)-12(x+y)=(x+y)[3(x-y)-12]=3(x-y)(x-y-4)$
f.
$x^2-2xy-x^2+4y^2=4y^2-2xy=2y(2y-x)$
a, \(\frac{x+1}{2x+6}=\frac{x+1}{2\left(x+3\right)}\)
b, \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)
c, \(\frac{x-x-2xy+x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x-2xy}{x+2y}+\frac{4xy}{\left(2y-x\right)\left(x+2y\right)}\)
\(=\frac{\left(x-2xy\right)\left(2y-x\right)}{\left(x+2y\right)\left(2y-x\right)}+\frac{4xy}{\left(2y-x\right)\left(x+2y\right)}=\frac{2xy-x^2+4xy^2+2x^2y}{\left(2y-x\right)\left(x+2y\right)}\)