Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(A=x^3+8-\left[x^3+1+3x\left(x+1\right)\right]+3\left(x^2-1\right)\)
\(A=x^3+8-x^3-1-3x\left(x+1\right)+3x^2-3\)
\(A=-3x^2-3x+3x^2+4\)
\(A=4-3x\)
b/ Để \(\left|A\right|=A\)
=> \(A\ge0\)
<=> \(4-3x\ge0\)
<=> \(4\ge3x\)
<=> \(x\ge\frac{3}{4}\)
Vậy khi \(x\ge\frac{3}{4}\)thì \(\left|A\right|=A\).
a: \(A=x^3-8-x^3-3x^2-3x+1+3x^2-3\)
\(=-3x-10\)
b: Để |A|=A thì A>=0
=>-3x-10>=0
=>-3x>=10
hay x<=-10/3
c: \(A=\dfrac{-3x^2+2}{x}\)
\(\Leftrightarrow-3x^2-10x=-3x^2+2\)
=>-10x=2
hay x=-1/5
a: \(C=\dfrac{5x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2x-1}{x^2+x+1}+\dfrac{2}{x-1}\)
\(=\dfrac{5x+1+2x^2-3x+1+2x^2+2x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{4x^2+4x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)
c: Để C>0 thì \(\dfrac{4x^2+4x+3}{\left(x-1\right)\left(x^2+x+1\right)}>0\)
=>x-1>0
hay x>1
\(A=\dfrac{x}{x-2}=>x.A=\dfrac{x.x}{x-2}=\dfrac{x.x-2.2+4}{x-2}\)
\(\Leftrightarrow x.A=x+2+\dfrac{4}{x-2}=\left(x-2\right)+\dfrac{4}{x-2}+4\)
có \(x>2\Leftrightarrow x-2>0\Rightarrow x-2=\sqrt{\left(x-2\right)^2}\)
\(x.A=\left(\sqrt{x-2}-\dfrac{2}{\sqrt{x-2}}\right)^2+8\)
có \(\left(\sqrt{x-2}-\dfrac{2}{\sqrt{x-2}}\right)^2\ge0\left\{x=4\right\}\)
GTNN x.A =8 khi x =4
a/ (2x + 1)(4x – 3) – 6x(x + 5) – 2x(x – 7) + 18x
=8x^2-6x+4x-3-6x^2-30x-2x^2+14x+18x
=-3
vậy...
Tìm x.
a) 9x^2 – 6x – 3 = 0
b) x^3 + 9x^2 + 27x + 19 = 0
c) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3
a) \(9x^2-6x-3=0\)
\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x^3+9x^2+27x+19=0\)
\(\Leftrightarrow x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+8x+19\right)=0\)
\(\Leftrightarrow x=-1\)( do \(x^2+8x+19=\left(x+4\right)^2+3>0\))
c) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-25\right)-x^3-8=3\)
\(\Leftrightarrow x^3-25x-x^3=8\Leftrightarrow-25x=11\Leftrightarrow x=-\dfrac{11}{25}\)
a: Để đây là phương trình bậc nhất một ẩn thì m+3<>0
hay m<>-3
b: Để đây là phươg trình bậc nhất một ẩn thì m<>0
e: \(\left(a^2-1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
\(=\left(a^3-1\right)\left(a^3+1\right)\)
\(=a^6-1\)
a: \(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\cdot x+\dfrac{1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{\left(x^2+1\right)\left(x+1\right)+x-1}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x^3+x^2+x+1+x-1}{\left(x-1\right)}\cdot\dfrac{x+1}{2x+1}\)
\(=\dfrac{x^3+x^2+2x}{x-1}\cdot\dfrac{x+1}{2x+1}=\dfrac{x\left(x^2+x+2\right)\left(x+1\right)}{\left(x-1\right)\left(2x+1\right)}\)
b: Khi x=1/2 thì \(A=\dfrac{\dfrac{1}{2}\left(\dfrac{1}{4}+\dfrac{1}{2}+2\right)\left(\dfrac{1}{2}+1\right)}{\left(\dfrac{1}{2}-1\right)\left(2\cdot\dfrac{1}{2}+1\right)}=-\dfrac{33}{16}\)