\(x^4-x+\frac{1}{2}>0\)

2. \(4a^4-4a^3+5a^2-2a+1>0\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

1. \(x^3-x+\frac{1}{2}=x^4-x^2+\frac{1}{4}+x^2-x+\frac{1}{4}=\left(x^2-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2\ge0\)

Nếu  \(\left(x^2-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2=0\)thì \(\hept{\begin{cases}x-\frac{1}{2}=0\\x^2-\frac{1}{2}=0\end{cases}=>\hept{\begin{cases}x=\frac{1}{2}\\x^2=\frac{1}{2}\end{cases}}}\)(VÔ LÍ)

Vậy \(x^4-x+\frac{1}{2}>0\)

15 tháng 7 2019

2/ \(BT=a^2\left(4a^2-4a+5\right)-2a+1\)

\(=\left(2a-1\right)^2.a^2+\left(4a^2-2a+1\right)\)

\(=\left(2a^2-a\right)^2+\left(2a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

5 tháng 7 2017

\(4a^2+b^2=5ab\)

\(\Leftrightarrow\left(4a^2-4ab\right)+\left(b^2-ab\right)=0\)

\(\Leftrightarrow4a\left(a-b\right)+b\left(b-a\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Leftrightarrow\) a = b hoặc 4a = b

Mà 4a > 2a > b > 0 nên a = b

Do đó  \(\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)

ta có

\(4a^2+b^2=5ab\Leftrightarrow\left(4a^2-4ab\right)+\left(b^2-ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)+\left(4a-b\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}b=a\\b=4a\end{cases}}\)

thế a = b vào M ta được

\(M=\frac{a.a}{4a^2-a^2}=\frac{1}{3}\)

thế b=a4 vào M ta được

\(M=\frac{a.4a}{4a^2-16a^2}=-\frac{1}{3}\)

nguồn https://olm.vn/hoi-dap/detail/64680575994.html

20 tháng 3 2019

a ) Ta có : \(\left(ab+1\right)^2\ge4ab\)

\(\Leftrightarrow a^2b^2+2ab+1-4ab\ge0\)

\(\Leftrightarrow\left(ab-1\right)^2\ge0\)

=> BĐT luôn đúng

Dấu " = " xảy ra \(\Leftrightarrow ab=1\)

b ) Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(ab+1.2\right)^2\le\left(a^2+1^2\right)\left(b^2+2^2\right)=\left(a^2+1\right)\left(b^2+4\right)\)

Dấu " = " xảy ra \(\Leftrightarrow2a=b\)

c ) Áp dụng BĐT Cô - si cho 2 số không âm , ta có :

\(4a^2+b^2\ge2\sqrt{4a^2.b^2}=4ab\)

\(\Rightarrow2\left(4a^2+b^2\right)\ge4a^2+4ab+b^2=\left(2a+b\right)^2\)

Dấu " = " xảy ra \(\Leftrightarrow2a=b\)

d ) \(x^5+y^5\ge xy\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5-x^4y-y^4x+y^5\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\)

Vì x ; y > 0 => BĐT luôn đúng

Dấu " = " xảy ra \(\Leftrightarrow x=y\)

20 tháng 3 2019

d ) x ; y > 0 nên x không thể = - y

Bài 1:

Để M là số nguyên thì \(x^3-2x^2+4⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{3;1;4;0;6;-2\right\}\)

26 tháng 9 2017

Ta có : \(4a^2+b^2=5ab\Leftrightarrow4a^2-5ab+b^2=0\Leftrightarrow4a^2-4ab-ab+b^2=0\)

\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)(1)

Ta thấy \(2a>b>0\left(gt\right)\) nên \(4a>b>0\Rightarrow4a-b>0\)

Từ đó để (1) xảy ra \(\Leftrightarrow a-b=0\Leftrightarrow a=b\) Thay vào P ta được :

\(P=\frac{ab}{4a^2-b^2}=\frac{a.a}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)

Vậy \(P=\frac{1}{3}\)

13 tháng 11 2016

Ta có :

\(4a^2+b^2-4ab=5ab-4ab\)

\(\Rightarrow\left(2a-b\right)^2=ab\)

Lại có : 

\(4a^2+b^2+4ab=5ab+4ab\)

\(\Rightarrow\left(2a+b\right)^2=9ab\)

\(\Rightarrow\left(2a+b\right)^2\left(2a-b\right)^2=ab.9ab\)

\(\left(4a^2-b^2\right)^2=\left(3ab\right)^2\)

Mà \(2a>b>0\Rightarrow\hept{\begin{cases}4a^2-b^2>0\\a>0;b>0\rightarrow3ab>0\end{cases}}\)

\(\Rightarrow4a^2-b^2=3ab\)

\(\Rightarrow A=\frac{ab}{3ab}=\frac{1}{3}\)

Vậy ...

5 tháng 4 2017

Mình mới học lớp 5 thôi nên không biết gì .

~~~ Chúc bạn học giỏi ~~~

29 tháng 12 2017

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

29 tháng 12 2017

Bạn nào giúp tớ với!

31 tháng 3 2020

\(P=\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(\frac{4a^2+b}{4a^2-b}+1\right)\)

\(=\left[\frac{2a+b}{\left(2a-b\right)\left(2a+b\right)}-\frac{3b}{\left(2a+b\right)\left(2a-b\right)}-\frac{2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right]:\frac{4a^2+b+4a^2-b}{4a^2-b}\)

\(=\frac{2a+b-3b-4a+2b}{4a^2-b}\cdot\frac{4a^2-b}{8a^2}\)

\(=\frac{-2a}{8a^2}\)

\(a< 0\Rightarrow-2a>0\Rightarrow\frac{-2a}{8a^2}>0\left(8a^2\ge0\right)\)

=> ĐFCM