Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến
CÂU 1:
\(A=\sqrt[4]{\left(2\sqrt{6}+5\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)
\(A=\sqrt{2\sqrt{6}+5}+\sqrt{5-2\sqrt{6}}\)
\(A=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(A=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)
\(A=2\sqrt{3}\)
Sửa đề (d) y=2(m-1)x+m^2+2m
a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)
Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)
=>\(3=2\left(m-1\right).1+m^2+2m\)
<=>\(m^2+2m+2m-2-3=0\)
<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)
b, Phương trình hoành độ giao điểm của (P) và (d) :
\(x^2=2\left(m-1\right)x+m^2+2m\)
<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)
\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)
Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B
c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)
\(x_1^2+x_2^2+6x_1x_2>2017\)
<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)
<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)
<=>\(4m^2-8m+4-4m^2-8m-2017>0\)
<=>\(-16m-2013>0\)
<=>\(m< \frac{-2013}{16}\)
Để phương trình đã cho có 2 nghiệm buộc:
\(\Delta\)'\(\ge0\)
\(\Leftrightarrow\left(-m\right)^2+m+3=0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\veebar m\)
Do đó với mọi m thì phương trình đã cho có 2 nghiệm
Theo hệ thức viet ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=-m-3\end{matrix}\right.\)
Từ giả thuyết \(\left|x_1\right|=\left|x_2\right|\\ \Leftrightarrow x_1^2=x_2^2\\ \Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=0\\ \Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}.\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\sqrt{\left(2m\right)^2+4m+12}.2m=0\\ \Leftrightarrow m=0\)(vì căn của 4m^2+4m+12>0)