Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(C=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|2x-1\right|+\left|2x-3\right|\)
\(=\left|2x-1\right|+\left|3-2x\right|\)
\(\ge\left|\left(2x-1\right)+\left(3-2x\right)\right|=\left|2\right|=2\)
Vậy \(C_{min}=2\)
a:
ĐKXĐ: \(x^2+3x>=0\)
=>x(x+3)>=0
=>\(\left[{}\begin{matrix}x>=0\\x< =-3\end{matrix}\right.\)
\(\sqrt{16}-\sqrt{x^2+3x}=0\)
=>\(\sqrt{x^2+3x}=\sqrt{16}\)
=>x^2+3x=16
=>x^2+3x-16=0
\(\text{Δ}=3^2-4\cdot1\cdot\left(-16\right)=9+64=73>0\)
Do đó: Phương trình có 2 nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{73}}{2}\\x_2=\dfrac{-3+\sqrt{73}}{2}\end{matrix}\right.\)
b:
ĐKXĐ: \(x\in R\)
\(3x-1-\sqrt{4x^2-12x+9}=0\)
=>\(\sqrt{\left(2x-3\right)^2}=3x-1\)
=>\(\left\{{}\begin{matrix}3x-1>=0\\\left(3x-1\right)^2=\left(2x-3\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\\left(x+2\right)\left(5x-4\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=\dfrac{4}{5}\left(nhận\right)\end{matrix}\right.\)
c:
ĐKXĐ: \(\left\{{}\begin{matrix}x^2-6x+8>=0\\2x^2-10x+11>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\x< =2\end{matrix}\right.\\\left[{}\begin{matrix}x< =\dfrac{5-\sqrt{3}}{2}\\x>=\dfrac{5+\sqrt{3}}{2}\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x< =\dfrac{5-\sqrt{3}}{2}\\x>=4\end{matrix}\right.\)
\(\sqrt{2x^2-10x+11}=\sqrt{x^2-6x+8}\)
\(\Leftrightarrow2x^2-10x+11=x^2-6x+8\)
=>\(x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>x=3(loại) hoặc x=1(nhận)
\(\left\{{}\begin{matrix}3x+y=m+1\\x-2y=5m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+2y=2m+2\\x-2y=5m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x-2y=5m-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=m\\m-2y=5m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=1-2m\end{matrix}\right.\\ 4x^2-y^2=10\Leftrightarrow4m^2-\left(1-2m\right)^2=10\\ \Leftrightarrow4m^2-4m^2+4m-1=10\\ \Leftrightarrow m=\dfrac{11}{4}\)
`a)x^2>4`
`<=>sqrtx^2>sqrt4`
`<=>|x|>2`
`<=>` \(\left[ \begin{array}{l}x>2\\x<-2\end{array} \right.\)
`b)x^2<9`
`<=>\sqrtx^2<sqrt9`
`<=>|x|<3`
`<=>-3<x<3`
`c)(x-1)^2>=4`
`<=>\sqrt{(x-1)^2}>=sqrt4`
`<=>|x-1|>=2`
`<=>` \(\left[ \begin{array}{l}x-1 \ge 2\\x-1 \le -2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x \ge 3\\x \le -1\end{array} \right.\)
`d)(1-2x)^2<=0,09`
`<=>\sqrt{(1-2x)^2}<=sqrt{0,09}`
`<=>|2x-1|<=0,3`
`<=>-0,3<=2x-1<=0,3`
`<=>0,7<=2x<=1,3`
`<=>0,35<=x<=0,65`
`e)x^2+6x-7>0`
`<=>x^2-x+7x-7>0`
`<=>x(x-1)+7(x-1)>0`
`<=>(x-1)(x+7)>0`
TH1:
\(\left[ \begin{array}{l}x-1>0\\x+7>0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x>1\\x>-7\end{array} \right.\)
`<=>x>1`
TH2"
\(\left[ \begin{array}{l}x-1<0\\x+7<0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x<1\\x<-7\end{array} \right.\)
`<=>x<-7`
`f)x^2-x<2`
`<=>x^2-x-2<0`
`<=>x^2-2x+x-2<0`
`<=>x(x-2)+x-2<0`
`<=>(x-2)(x+1)<0`
`<=>` \(\begin{cases}x-2<0\\x+1>0\\\end{cases}\)
`<=>` \(\begin{cases}x<2\\x>-1\\\end{cases}\)
`<=>-1<x<2`
a) x2 > 4
<=> \(\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)
b) \(x^2< 9\)
<=> \(-3< x< 3\)
c) \(\left(x-1\right)^2\ge4\)
<=> \(\left[{}\begin{matrix}x-1\ge2< =>x\ge3\\x-1\le-2< =>x\le-1\end{matrix}\right.\)
d) \(\left(1-2x\right)^2\le0,09\)
<=> \(-0,3\le1-2x\le0,3\)
<=> \(1,3\ge2x\ge0,7\)
<=> \(0,65\ge x\ge0,35\)
e) \(x^2+6x-7>0\)
<=> \(\left(x+7\right)\left(x-1\right)>0\)
<=> \(\left[{}\begin{matrix}x-1>0< =>x>1\\x+7< 0< =>x< -7\end{matrix}\right.\)
f) \(x^2-x< 2\)
<=> \(x^2-x-2< 0\)
<=> \(\left(x-2\right)\left(x+1\right)< 0\)
<=> \(\left\{{}\begin{matrix}x+1>0< =>x>-1\\x-2< 0< =>x< 2\end{matrix}\right.\)
<=> -1 < x < 2
g) \(4x^2-12x\le\dfrac{-135}{16}\)
<=> \(64x^2-192x+135\le0\)
<=> (8x - 15)(8x - 9) \(\le0\)
<=> \(\left\{{}\begin{matrix}8x-15\le0< =>x\le\dfrac{15}{8}\\8x-9\ge0< =>x\ge\dfrac{9}{8}\end{matrix}\right.\)
<=> \(\dfrac{9}{8}\le x\le\dfrac{15}{8}\)
ĐK: y ≥ 1 3 x + 2 y ≥ 1 ⇔ x ≥ 1 − 2 y y ≥ 1 3
Xét 3 y − 1 + x + 2 y − 1 = 0 ⇔ x = y = 1 3
Thay vào (2) không thỏa mãn
Xét 3 y − 1 + x + 2 y − 1 ≠ 0 ⇔ x ≠ 1 3 y ≠ 1 3
(1) ⇔ y ( x – y ) = y − x 3 y − 1 + x + 2 y − 1
Với x = y, thay vào (2) ta được:
x 4 – 4 x 3 + 7 x 2 − 6 x + 2 = 0 ⇔ ( x – 1 ) 2 ( x 2 – 2 x + 2 ) = 0 ⇔ x = 1
Khi đó: y = 1 (TM). Vậy nghiệm của hệ là (1; 1)
Nên x. y = 1
Đáp án:B
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk
tốt...