Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo :
C1 :
Gọi học sinh lop 9a là x
Và học sinh lớp 9b là 80-x
Vì 2 lớp góp được 198 cuốn nên ta có phương trình :
2x+3(80-x)=198
2x+240-3x=198
-x=198-240
-x=-42
Vậy học sinh lớp 9a là 42 học sinh
Và học sinh lop 9b là : 80-x=80-42=38 học sinh.
C2 :
Gọi số học sinh của lớp 9A là a ( 0<a<80, a thuộc N* ,đv: học sinh) ⇒
Số học sinh của lớp 9B là 80-a (học sinh)
Số vở lớp 9A ủng hộ là: 2a (quyển)
Số vở lớp 9B ủng hộ là: 3(80-a) (quyển)
Mà cả 2 lớp ủng hộ được 198 quyển nên ta có phương trình: 2a+3(80-a)=198 ⇔ a=42 (tm)
Vậy số học sinh lớp 9A là 42 học sinh, số học sinh lớp 9B là 80-42=38 học sinh.
+ Gọi số học sinh của lớp 9A là x học sinh ( x ∈ ℕ * )
+ Gọi số học sinh của lớp 9B là y học sinh ( y ∈ ℕ * ).
+ Ta có học sinh lớp 9A ủng hộ: 6x quyển sách giáo khoa và 3x quyển sách tham khảo.
+ Ta có học sinh lớp 9B ủng hộ: 5y quyển sách giáo khoa và 4y quyển sách tham khảo.
+ Vì tổng số sách học sinh hai lớp ủng hộ là 738 quyển, nên ta có phương trình: ( 6 x + 3 x ) + ( 5 y + 4 y ) = 738 hay
9 x + 9 y = 738 ⇔ x + y = 82 (1).
+ Số sách giáo khoa học sinh hai lớp ủng hộ là 6x+5y (quyển)
+ Số sách tham khảo học sinh hai lớp ủng hộ là 3x+4y (quyển)
+ Vì số sách giáo khoa nhiều hơn số sách tham khảo là 166 quyển nên ta có phương trình: ( 6 x + 5 y ) − ( 3 x + 4 y ) = 166 ⇔ 3 x + y = 166 (2).
+ Từ (1) và (2) ta có hệ phương trình x + y = 82 3 x + y = 166
+ Giải hệ trên được nghiệm x = 42 y = 40 (thoả mãn điều kiện)
+ Vậy lớp 9A có 42 học sinh và lớp 9B có 40 học sinh
Gọi số học sinh của lớp 9A là x (học sinh), số học sinh lớp 9B là y (học sinh) (ĐK: )
Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)
Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 4y (quyển)
Từ đó ta có:
Số sách giáo khoa cả hai lớp đã ủng hộ là (quyển)
Số sách tham khảo cả hia lớp đã ủng hộ là (quyển)
Vì cả hai lớp ủng hộ 738 quyển nên ta có phương trình
Và số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166 quyển nên ta có phương trình
Từ (1) và (2) ta có hệ phương trình
Vậy số học sinh của lớp 9A là 42 học sinh, số học sinh lớp 9B là 40 học sinh.
Gọi số học sinh của lớp lần lượt là ( học sinh )
Theo bài ra ta có :
Cả lớp ủng hộ thư viện quyển sách nên ta có phương trình.
Số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là quyển nên ta có phương trình.
Từ
Lấy ta được :
Vậy: Số học sinh của lớp là hs
Số học sinh của lớp là hs
gọi số hs lớp 8a, 8b lần lượt là a,b (a,b >0)(a, b \(\in\)N)
tổng số sách giáo khoa lớp 8a ủng hộ là 6a (quyển )
tổng số sách giáo khoa lớp 8b ủng hộ là 5b (qu)
tổng số sách giáo khoa 2 lớp ủng hộ là 6a + 5b (qu)
số sách tham khỏa lớp 8a ủng hộ là 3a (qu)
số sách tham khảo lớp 8b ủng hộ là 4b (qu)
tổng số sách tham khảo 2 lớp ủng hộ là 3a + 4b (qu)
mà số SGK lớn hơn số sách TK là 166 qu
\(\Rightarrow\)pt 3a + 4b + 166= 6a +5b
166= 3a + b (1)
tổng số sách 2 lớp ủng hộ là
3a +4b +6a +5b = 738
9a + 9b = 738
a + b= 82 (2)
từ 1 và 2
suy ra hpt \(\hept{\begin{cases}a+b=82\\3a+b=166\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=42\\b=40\end{cases}}\)(tm)
vậy .................
#mã mã#
Gọi số học sinh lớp 9A là a
Theo đề, ta có: \(3a+4\left(90-a\right)=312\)
\(\Leftrightarrow-a=-48\)
hay a=48
Gọi số học sinh của lớp 9A là a(bạn)
Gọi số học sinh của lớp 9B là b(bạn)
(Điều kiện: \(a\in Z^+;b\in Z^+\))
Vì hai lớp có tổng cộng 79 học sinh nên ta có phương trình: a+b=79(1)
Số tiền lớp 9A đóng góp là:
10000a(đồng)
Số tiền lớp 9B đóng góp là:
15000b(đồng)
Theo đề, ta có phương trình: \(10000a+15000b=975000\)
\(\Leftrightarrow2a+3b=195\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=79\\2a+3b=195\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=158\\2a+3b=195\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-37\\a+b=79\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=37\\a=79-b=79-37=42\end{matrix}\right.\)(thỏa ĐK)
Vậy: lớp 9A có 42 bạn
lớp 9B có 37 bạn
Gọi x là số học sinh lớp 9A (x N* và x < 79)
Số học sinh lớp 9B là: 79 – x (học sinh)
Lớp 9A quyên góp được: 10000x (đồng)
Lớp 9B quyên góp được: 15000(79 – x) (đồng)
Do cả hai lớp quyên góp được 975000 đồng nên ta có phương trình:
10000x + 15000(79 – x) = 975000
10x + 15(79 – x) = 975 -5x = - 210 x = 42
Vậy lớp 9A có 42 học sinh; lớp 9B có: 79 – 42 = 37 (học sinh)
Câu 1:
Gọi số học sinh của lớp 9A là x(bạn), số học sinh của lớp 9B là y(bạn)
(Điều kiện: \(x,y\in Z^+\))
Tổng số học sinh của hai lớp là 76 nên ta có:
x+y=76
Số quyển sách lớp 9A quyên góp được là 3x(quyển)
Số quyển sách lớp 9B quyên góp được là 2y(quyển)
Cả hai lớp quyên góp được 189 quyển, nên ta có: 3x+2y=189
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=76\\3x+2y=189\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+3y=228\\3x+2y=189\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3y-2y=228-189=39\\x+y=76\end{matrix}\right.\)
=>y=39 và x=76-y=76-39=37
Vậy: Lớp 9A có 37 bạn, lớp 9B có 39 bạn